Copied to
clipboard

G = D40⋊S3order 480 = 25·3·5

2nd semidirect product of D40 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C402D6, D402S3, D208D6, C2410D10, D6.5D20, C1208C22, C60.94C23, Dic3.7D20, D60.26C22, Dic3015C22, C3⋊C82D10, C84(S3×D5), (C3×D40)⋊4C2, C8⋊S33D5, C51(D8⋊S3), C10.4(S3×D4), C30.8(C2×D4), C2.9(S3×D20), C6.4(C2×D20), C24⋊D53C2, (S3×D20)⋊10C2, C3⋊D4011C2, C32(C8⋊D10), C154(C8⋊C22), (C4×S3).2D10, (S3×C10).2D4, D205S38C2, (C5×Dic3).2D4, C6.D2010C2, (C3×D20)⋊15C22, C12.67(C22×D5), (S3×C20).25C22, C20.144(C22×S3), C4.93(C2×S3×D5), (C5×C8⋊S3)⋊3C2, (C5×C3⋊C8)⋊16C22, SmallGroup(480,330)

Series: Derived Chief Lower central Upper central

C1C60 — D40⋊S3
C1C5C15C30C60C3×D20S3×D20 — D40⋊S3
C15C30C60 — D40⋊S3
C1C2C4C8

Generators and relations for D40⋊S3
 G = < a,b,c,d | a40=b2=c3=d2=1, bab=a-1, ac=ca, dad=a21, bc=cb, dbd=a20b, dcd=c-1 >

Subgroups: 1020 in 136 conjugacy classes, 40 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C23, D5, C10, C10, Dic3, Dic3, C12, D6, D6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, Dic5, C20, C20, D10, C2×C10, C3⋊C8, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C3×D4, C22×S3, C5×S3, C3×D5, D15, C30, C8⋊C22, C40, C40, Dic10, C4×D5, D20, D20, C5⋊D4, C2×C20, C22×D5, C8⋊S3, C24⋊C2, D4⋊S3, D4.S3, C3×D8, S3×D4, D42S3, C5×Dic3, Dic15, C60, S3×D5, C6×D5, S3×C10, D30, C40⋊C2, D40, D40, C5×M4(2), C2×D20, C4○D20, D8⋊S3, C5×C3⋊C8, C120, D5×Dic3, C15⋊D4, C3⋊D20, C3×D20, S3×C20, Dic30, D60, C2×S3×D5, C8⋊D10, C3⋊D40, C6.D20, C3×D40, C5×C8⋊S3, C24⋊D5, D205S3, S3×D20, D40⋊S3
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C22×S3, C8⋊C22, D20, C22×D5, S3×D4, S3×D5, C2×D20, D8⋊S3, C2×S3×D5, C8⋊D10, S3×D20, D40⋊S3

Smallest permutation representation of D40⋊S3
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 40)(2 39)(3 38)(4 37)(5 36)(6 35)(7 34)(8 33)(9 32)(10 31)(11 30)(12 29)(13 28)(14 27)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)(41 56)(42 55)(43 54)(44 53)(45 52)(46 51)(47 50)(48 49)(57 80)(58 79)(59 78)(60 77)(61 76)(62 75)(63 74)(64 73)(65 72)(66 71)(67 70)(68 69)(81 82)(83 120)(84 119)(85 118)(86 117)(87 116)(88 115)(89 114)(90 113)(91 112)(92 111)(93 110)(94 109)(95 108)(96 107)(97 106)(98 105)(99 104)(100 103)(101 102)
(1 49 102)(2 50 103)(3 51 104)(4 52 105)(5 53 106)(6 54 107)(7 55 108)(8 56 109)(9 57 110)(10 58 111)(11 59 112)(12 60 113)(13 61 114)(14 62 115)(15 63 116)(16 64 117)(17 65 118)(18 66 119)(19 67 120)(20 68 81)(21 69 82)(22 70 83)(23 71 84)(24 72 85)(25 73 86)(26 74 87)(27 75 88)(28 76 89)(29 77 90)(30 78 91)(31 79 92)(32 80 93)(33 41 94)(34 42 95)(35 43 96)(36 44 97)(37 45 98)(38 46 99)(39 47 100)(40 48 101)
(2 22)(4 24)(6 26)(8 28)(10 30)(12 32)(14 34)(16 36)(18 38)(20 40)(41 94)(42 115)(43 96)(44 117)(45 98)(46 119)(47 100)(48 81)(49 102)(50 83)(51 104)(52 85)(53 106)(54 87)(55 108)(56 89)(57 110)(58 91)(59 112)(60 93)(61 114)(62 95)(63 116)(64 97)(65 118)(66 99)(67 120)(68 101)(69 82)(70 103)(71 84)(72 105)(73 86)(74 107)(75 88)(76 109)(77 90)(78 111)(79 92)(80 113)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(57,80)(58,79)(59,78)(60,77)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69)(81,82)(83,120)(84,119)(85,118)(86,117)(87,116)(88,115)(89,114)(90,113)(91,112)(92,111)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(101,102), (1,49,102)(2,50,103)(3,51,104)(4,52,105)(5,53,106)(6,54,107)(7,55,108)(8,56,109)(9,57,110)(10,58,111)(11,59,112)(12,60,113)(13,61,114)(14,62,115)(15,63,116)(16,64,117)(17,65,118)(18,66,119)(19,67,120)(20,68,81)(21,69,82)(22,70,83)(23,71,84)(24,72,85)(25,73,86)(26,74,87)(27,75,88)(28,76,89)(29,77,90)(30,78,91)(31,79,92)(32,80,93)(33,41,94)(34,42,95)(35,43,96)(36,44,97)(37,45,98)(38,46,99)(39,47,100)(40,48,101), (2,22)(4,24)(6,26)(8,28)(10,30)(12,32)(14,34)(16,36)(18,38)(20,40)(41,94)(42,115)(43,96)(44,117)(45,98)(46,119)(47,100)(48,81)(49,102)(50,83)(51,104)(52,85)(53,106)(54,87)(55,108)(56,89)(57,110)(58,91)(59,112)(60,93)(61,114)(62,95)(63,116)(64,97)(65,118)(66,99)(67,120)(68,101)(69,82)(70,103)(71,84)(72,105)(73,86)(74,107)(75,88)(76,109)(77,90)(78,111)(79,92)(80,113)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(57,80)(58,79)(59,78)(60,77)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69)(81,82)(83,120)(84,119)(85,118)(86,117)(87,116)(88,115)(89,114)(90,113)(91,112)(92,111)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(101,102), (1,49,102)(2,50,103)(3,51,104)(4,52,105)(5,53,106)(6,54,107)(7,55,108)(8,56,109)(9,57,110)(10,58,111)(11,59,112)(12,60,113)(13,61,114)(14,62,115)(15,63,116)(16,64,117)(17,65,118)(18,66,119)(19,67,120)(20,68,81)(21,69,82)(22,70,83)(23,71,84)(24,72,85)(25,73,86)(26,74,87)(27,75,88)(28,76,89)(29,77,90)(30,78,91)(31,79,92)(32,80,93)(33,41,94)(34,42,95)(35,43,96)(36,44,97)(37,45,98)(38,46,99)(39,47,100)(40,48,101), (2,22)(4,24)(6,26)(8,28)(10,30)(12,32)(14,34)(16,36)(18,38)(20,40)(41,94)(42,115)(43,96)(44,117)(45,98)(46,119)(47,100)(48,81)(49,102)(50,83)(51,104)(52,85)(53,106)(54,87)(55,108)(56,89)(57,110)(58,91)(59,112)(60,93)(61,114)(62,95)(63,116)(64,97)(65,118)(66,99)(67,120)(68,101)(69,82)(70,103)(71,84)(72,105)(73,86)(74,107)(75,88)(76,109)(77,90)(78,111)(79,92)(80,113) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,40),(2,39),(3,38),(4,37),(5,36),(6,35),(7,34),(8,33),(9,32),(10,31),(11,30),(12,29),(13,28),(14,27),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21),(41,56),(42,55),(43,54),(44,53),(45,52),(46,51),(47,50),(48,49),(57,80),(58,79),(59,78),(60,77),(61,76),(62,75),(63,74),(64,73),(65,72),(66,71),(67,70),(68,69),(81,82),(83,120),(84,119),(85,118),(86,117),(87,116),(88,115),(89,114),(90,113),(91,112),(92,111),(93,110),(94,109),(95,108),(96,107),(97,106),(98,105),(99,104),(100,103),(101,102)], [(1,49,102),(2,50,103),(3,51,104),(4,52,105),(5,53,106),(6,54,107),(7,55,108),(8,56,109),(9,57,110),(10,58,111),(11,59,112),(12,60,113),(13,61,114),(14,62,115),(15,63,116),(16,64,117),(17,65,118),(18,66,119),(19,67,120),(20,68,81),(21,69,82),(22,70,83),(23,71,84),(24,72,85),(25,73,86),(26,74,87),(27,75,88),(28,76,89),(29,77,90),(30,78,91),(31,79,92),(32,80,93),(33,41,94),(34,42,95),(35,43,96),(36,44,97),(37,45,98),(38,46,99),(39,47,100),(40,48,101)], [(2,22),(4,24),(6,26),(8,28),(10,30),(12,32),(14,34),(16,36),(18,38),(20,40),(41,94),(42,115),(43,96),(44,117),(45,98),(46,119),(47,100),(48,81),(49,102),(50,83),(51,104),(52,85),(53,106),(54,87),(55,108),(56,89),(57,110),(58,91),(59,112),(60,93),(61,114),(62,95),(63,116),(64,97),(65,118),(66,99),(67,120),(68,101),(69,82),(70,103),(71,84),(72,105),(73,86),(74,107),(75,88),(76,109),(77,90),(78,111),(79,92),(80,113)]])

54 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B6A6B6C8A8B10A10B10C10D 12 15A15B20A20B20C20D20E20F24A24B30A30B40A40B40C40D40E40F40G40H60A60B60C60D120A···120H
order122222344455666881010101012151520202020202024243030404040404040404060606060120···120
size11620206022660222404041222121244422221212444444441212121244444···4

54 irreducible representations

dim111111112222222222244444444
type+++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6D10D10D10D20D20C8⋊C22S3×D4S3×D5D8⋊S3C2×S3×D5C8⋊D10S3×D20D40⋊S3
kernelD40⋊S3C3⋊D40C6.D20C3×D40C5×C8⋊S3C24⋊D5D205S3S3×D20D40C5×Dic3S3×C10C8⋊S3C40D20C3⋊C8C24C4×S3Dic3D6C15C10C8C5C4C3C2C1
# reps111111111112122224411222448

Matrix representation of D40⋊S3 in GL4(𝔽241) generated by

1620332165
86102172204
2097622538
6937155139
,
8414816855
181573673
7318615793
20516822384
,
24002400
02400240
1000
0100
,
1000
0100
24002400
02400240
G:=sub<GL(4,GF(241))| [16,86,209,69,203,102,76,37,32,172,225,155,165,204,38,139],[84,18,73,205,148,157,186,168,168,36,157,223,55,73,93,84],[240,0,1,0,0,240,0,1,240,0,0,0,0,240,0,0],[1,0,240,0,0,1,0,240,0,0,240,0,0,0,0,240] >;

D40⋊S3 in GAP, Magma, Sage, TeX

D_{40}\rtimes S_3
% in TeX

G:=Group("D40:S3");
// GroupNames label

G:=SmallGroup(480,330);
// by ID

G=gap.SmallGroup(480,330);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,254,219,142,675,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^40=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^21,b*c=c*b,d*b*d=a^20*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽