Extensions 1→N→G→Q→1 with N=C5×S3×Q8 and Q=C2

Direct product G=N×Q with N=C5×S3×Q8 and Q=C2
dρLabelID
S3×Q8×C10240S3xQ8xC10480,1157

Semidirect products G=N:Q with N=C5×S3×Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×S3×Q8)⋊1C2 = S3×Q8⋊D5φ: C2/C1C2 ⊆ Out C5×S3×Q81208+(C5xS3xQ8):1C2480,579
(C5×S3×Q8)⋊2C2 = D20.28D6φ: C2/C1C2 ⊆ Out C5×S3×Q82408-(C5xS3xQ8):2C2480,594
(C5×S3×Q8)⋊3C2 = C60.44C23φ: C2/C1C2 ⊆ Out C5×S3×Q82408+(C5xS3xQ8):3C2480,596
(C5×S3×Q8)⋊4C2 = D20.29D6φ: C2/C1C2 ⊆ Out C5×S3×Q82408-(C5xS3xQ8):4C2480,1104
(C5×S3×Q8)⋊5C2 = C30.33C24φ: C2/C1C2 ⊆ Out C5×S3×Q82408+(C5xS3xQ8):5C2480,1105
(C5×S3×Q8)⋊6C2 = S3×Q8×D5φ: C2/C1C2 ⊆ Out C5×S3×Q81208-(C5xS3xQ8):6C2480,1107
(C5×S3×Q8)⋊7C2 = S3×Q82D5φ: C2/C1C2 ⊆ Out C5×S3×Q81208+(C5xS3xQ8):7C2480,1109
(C5×S3×Q8)⋊8C2 = C5×S3×SD16φ: C2/C1C2 ⊆ Out C5×S3×Q81204(C5xS3xQ8):8C2480,792
(C5×S3×Q8)⋊9C2 = C5×D4.D6φ: C2/C1C2 ⊆ Out C5×S3×Q82404(C5xS3xQ8):9C2480,794
(C5×S3×Q8)⋊10C2 = C5×Q16⋊S3φ: C2/C1C2 ⊆ Out C5×S3×Q82404(C5xS3xQ8):10C2480,797
(C5×S3×Q8)⋊11C2 = C5×Q8.15D6φ: C2/C1C2 ⊆ Out C5×S3×Q82404(C5xS3xQ8):11C2480,1159
(C5×S3×Q8)⋊12C2 = C5×Q8○D12φ: C2/C1C2 ⊆ Out C5×S3×Q82404(C5xS3xQ8):12C2480,1162
(C5×S3×Q8)⋊13C2 = C5×S3×C4○D4φ: trivial image1204(C5xS3xQ8):13C2480,1160

Non-split extensions G=N.Q with N=C5×S3×Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×S3×Q8).1C2 = S3×C5⋊Q16φ: C2/C1C2 ⊆ Out C5×S3×Q82408-(C5xS3xQ8).1C2480,585
(C5×S3×Q8).2C2 = C5×S3×Q16φ: C2/C1C2 ⊆ Out C5×S3×Q82404(C5xS3xQ8).2C2480,796

׿
×
𝔽