Copied to
clipboard

## G = S3×Q8⋊2D5order 480 = 25·3·5

### Direct product of S3 and Q8⋊2D5

Series: Derived Chief Lower central Upper central

 Derived series C1 — C30 — S3×Q8⋊2D5
 Chief series C1 — C5 — C15 — C30 — C6×D5 — C2×S3×D5 — C4×S3×D5 — S3×Q8⋊2D5
 Lower central C15 — C30 — S3×Q8⋊2D5
 Upper central C1 — C2 — Q8

Generators and relations for S3×Q82D5
G = < a,b,c,d,e,f | a3=b2=c4=e5=f2=1, d2=c2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=fcf=c-1, ce=ec, de=ed, df=fd, fef=e-1 >

Subgroups: 1724 in 328 conjugacy classes, 112 normal (24 characteristic)
C1, C2, C2 [×8], C3, C4 [×3], C4 [×5], C22 [×13], C5, S3 [×2], S3 [×3], C6, C6 [×3], C2×C4 [×16], D4 [×12], Q8, Q8 [×3], C23 [×3], D5 [×6], C10, C10 [×2], Dic3 [×3], Dic3, C12 [×3], C12, D6, D6 [×9], C2×C6 [×3], C15, C22×C4 [×3], C2×D4 [×3], C2×Q8, C4○D4 [×8], Dic5, Dic5, C20 [×3], C20 [×3], D10 [×3], D10 [×9], C2×C10, Dic6 [×3], C4×S3 [×3], C4×S3 [×7], D12 [×3], C2×Dic3 [×3], C3⋊D4 [×6], C2×C12 [×3], C3×D4 [×3], C3×Q8, C22×S3 [×3], C5×S3 [×2], C3×D5 [×3], D15 [×3], C30, C2×C4○D4, C4×D5 [×3], C4×D5 [×9], D20 [×3], D20 [×9], C2×Dic5, C2×C20 [×3], C5×Q8, C5×Q8 [×3], C22×D5 [×3], S3×C2×C4 [×3], C4○D12 [×3], S3×D4 [×3], D42S3 [×3], S3×Q8, Q83S3, C3×C4○D4, C5×Dic3 [×3], C3×Dic5, Dic15, C60 [×3], S3×D5 [×6], C6×D5 [×3], S3×C10, D30 [×3], C2×C4×D5 [×3], C2×D20 [×3], Q82D5, Q82D5 [×7], Q8×C10, S3×C4○D4, D5×Dic3 [×3], S3×Dic5, D30.C2 [×3], C3⋊D20 [×6], D5×C12 [×3], C3×D20 [×3], C5×Dic6 [×3], S3×C20 [×3], C4×D15 [×3], D60 [×3], Q8×C15, C2×S3×D5 [×3], C2×Q82D5, D20⋊S3 [×3], C12.28D10 [×3], C4×S3×D5 [×3], S3×D20 [×3], C3×Q82D5, C5×S3×Q8, Q83D15, S3×Q82D5
Quotients: C1, C2 [×15], C22 [×35], S3, C23 [×15], D5, D6 [×7], C4○D4 [×2], C24, D10 [×7], C22×S3 [×7], C2×C4○D4, C22×D5 [×7], S3×C23, S3×D5, Q82D5 [×2], C23×D5, S3×C4○D4, C2×S3×D5 [×3], C2×Q82D5, C22×S3×D5, S3×Q82D5

Smallest permutation representation of S3×Q82D5
On 120 points
Generators in S120
(1 6 11)(2 7 12)(3 8 13)(4 9 14)(5 10 15)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)(61 66 71)(62 67 72)(63 68 73)(64 69 74)(65 70 75)(76 81 86)(77 82 87)(78 83 88)(79 84 89)(80 85 90)(91 96 101)(92 97 102)(93 98 103)(94 99 104)(95 100 105)(106 111 116)(107 112 117)(108 113 118)(109 114 119)(110 115 120)
(6 11)(7 12)(8 13)(9 14)(10 15)(21 26)(22 27)(23 28)(24 29)(25 30)(36 41)(37 42)(38 43)(39 44)(40 45)(51 56)(52 57)(53 58)(54 59)(55 60)(66 71)(67 72)(68 73)(69 74)(70 75)(81 86)(82 87)(83 88)(84 89)(85 90)(96 101)(97 102)(98 103)(99 104)(100 105)(111 116)(112 117)(113 118)(114 119)(115 120)
(1 46 16 31)(2 47 17 32)(3 48 18 33)(4 49 19 34)(5 50 20 35)(6 51 21 36)(7 52 22 37)(8 53 23 38)(9 54 24 39)(10 55 25 40)(11 56 26 41)(12 57 27 42)(13 58 28 43)(14 59 29 44)(15 60 30 45)(61 91 76 106)(62 92 77 107)(63 93 78 108)(64 94 79 109)(65 95 80 110)(66 96 81 111)(67 97 82 112)(68 98 83 113)(69 99 84 114)(70 100 85 115)(71 101 86 116)(72 102 87 117)(73 103 88 118)(74 104 89 119)(75 105 90 120)
(1 76 16 61)(2 77 17 62)(3 78 18 63)(4 79 19 64)(5 80 20 65)(6 81 21 66)(7 82 22 67)(8 83 23 68)(9 84 24 69)(10 85 25 70)(11 86 26 71)(12 87 27 72)(13 88 28 73)(14 89 29 74)(15 90 30 75)(31 106 46 91)(32 107 47 92)(33 108 48 93)(34 109 49 94)(35 110 50 95)(36 111 51 96)(37 112 52 97)(38 113 53 98)(39 114 54 99)(40 115 55 100)(41 116 56 101)(42 117 57 102)(43 118 58 103)(44 119 59 104)(45 120 60 105)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 95)(2 94)(3 93)(4 92)(5 91)(6 100)(7 99)(8 98)(9 97)(10 96)(11 105)(12 104)(13 103)(14 102)(15 101)(16 110)(17 109)(18 108)(19 107)(20 106)(21 115)(22 114)(23 113)(24 112)(25 111)(26 120)(27 119)(28 118)(29 117)(30 116)(31 80)(32 79)(33 78)(34 77)(35 76)(36 85)(37 84)(38 83)(39 82)(40 81)(41 90)(42 89)(43 88)(44 87)(45 86)(46 65)(47 64)(48 63)(49 62)(50 61)(51 70)(52 69)(53 68)(54 67)(55 66)(56 75)(57 74)(58 73)(59 72)(60 71)

G:=sub<Sym(120)| (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90)(96,101)(97,102)(98,103)(99,104)(100,105)(111,116)(112,117)(113,118)(114,119)(115,120), (1,46,16,31)(2,47,17,32)(3,48,18,33)(4,49,19,34)(5,50,20,35)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,91,76,106)(62,92,77,107)(63,93,78,108)(64,94,79,109)(65,95,80,110)(66,96,81,111)(67,97,82,112)(68,98,83,113)(69,99,84,114)(70,100,85,115)(71,101,86,116)(72,102,87,117)(73,103,88,118)(74,104,89,119)(75,105,90,120), (1,76,16,61)(2,77,17,62)(3,78,18,63)(4,79,19,64)(5,80,20,65)(6,81,21,66)(7,82,22,67)(8,83,23,68)(9,84,24,69)(10,85,25,70)(11,86,26,71)(12,87,27,72)(13,88,28,73)(14,89,29,74)(15,90,30,75)(31,106,46,91)(32,107,47,92)(33,108,48,93)(34,109,49,94)(35,110,50,95)(36,111,51,96)(37,112,52,97)(38,113,53,98)(39,114,54,99)(40,115,55,100)(41,116,56,101)(42,117,57,102)(43,118,58,103)(44,119,59,104)(45,120,60,105), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,95)(2,94)(3,93)(4,92)(5,91)(6,100)(7,99)(8,98)(9,97)(10,96)(11,105)(12,104)(13,103)(14,102)(15,101)(16,110)(17,109)(18,108)(19,107)(20,106)(21,115)(22,114)(23,113)(24,112)(25,111)(26,120)(27,119)(28,118)(29,117)(30,116)(31,80)(32,79)(33,78)(34,77)(35,76)(36,85)(37,84)(38,83)(39,82)(40,81)(41,90)(42,89)(43,88)(44,87)(45,86)(46,65)(47,64)(48,63)(49,62)(50,61)(51,70)(52,69)(53,68)(54,67)(55,66)(56,75)(57,74)(58,73)(59,72)(60,71)>;

G:=Group( (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90)(96,101)(97,102)(98,103)(99,104)(100,105)(111,116)(112,117)(113,118)(114,119)(115,120), (1,46,16,31)(2,47,17,32)(3,48,18,33)(4,49,19,34)(5,50,20,35)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,91,76,106)(62,92,77,107)(63,93,78,108)(64,94,79,109)(65,95,80,110)(66,96,81,111)(67,97,82,112)(68,98,83,113)(69,99,84,114)(70,100,85,115)(71,101,86,116)(72,102,87,117)(73,103,88,118)(74,104,89,119)(75,105,90,120), (1,76,16,61)(2,77,17,62)(3,78,18,63)(4,79,19,64)(5,80,20,65)(6,81,21,66)(7,82,22,67)(8,83,23,68)(9,84,24,69)(10,85,25,70)(11,86,26,71)(12,87,27,72)(13,88,28,73)(14,89,29,74)(15,90,30,75)(31,106,46,91)(32,107,47,92)(33,108,48,93)(34,109,49,94)(35,110,50,95)(36,111,51,96)(37,112,52,97)(38,113,53,98)(39,114,54,99)(40,115,55,100)(41,116,56,101)(42,117,57,102)(43,118,58,103)(44,119,59,104)(45,120,60,105), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,95)(2,94)(3,93)(4,92)(5,91)(6,100)(7,99)(8,98)(9,97)(10,96)(11,105)(12,104)(13,103)(14,102)(15,101)(16,110)(17,109)(18,108)(19,107)(20,106)(21,115)(22,114)(23,113)(24,112)(25,111)(26,120)(27,119)(28,118)(29,117)(30,116)(31,80)(32,79)(33,78)(34,77)(35,76)(36,85)(37,84)(38,83)(39,82)(40,81)(41,90)(42,89)(43,88)(44,87)(45,86)(46,65)(47,64)(48,63)(49,62)(50,61)(51,70)(52,69)(53,68)(54,67)(55,66)(56,75)(57,74)(58,73)(59,72)(60,71) );

G=PermutationGroup([(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60),(61,66,71),(62,67,72),(63,68,73),(64,69,74),(65,70,75),(76,81,86),(77,82,87),(78,83,88),(79,84,89),(80,85,90),(91,96,101),(92,97,102),(93,98,103),(94,99,104),(95,100,105),(106,111,116),(107,112,117),(108,113,118),(109,114,119),(110,115,120)], [(6,11),(7,12),(8,13),(9,14),(10,15),(21,26),(22,27),(23,28),(24,29),(25,30),(36,41),(37,42),(38,43),(39,44),(40,45),(51,56),(52,57),(53,58),(54,59),(55,60),(66,71),(67,72),(68,73),(69,74),(70,75),(81,86),(82,87),(83,88),(84,89),(85,90),(96,101),(97,102),(98,103),(99,104),(100,105),(111,116),(112,117),(113,118),(114,119),(115,120)], [(1,46,16,31),(2,47,17,32),(3,48,18,33),(4,49,19,34),(5,50,20,35),(6,51,21,36),(7,52,22,37),(8,53,23,38),(9,54,24,39),(10,55,25,40),(11,56,26,41),(12,57,27,42),(13,58,28,43),(14,59,29,44),(15,60,30,45),(61,91,76,106),(62,92,77,107),(63,93,78,108),(64,94,79,109),(65,95,80,110),(66,96,81,111),(67,97,82,112),(68,98,83,113),(69,99,84,114),(70,100,85,115),(71,101,86,116),(72,102,87,117),(73,103,88,118),(74,104,89,119),(75,105,90,120)], [(1,76,16,61),(2,77,17,62),(3,78,18,63),(4,79,19,64),(5,80,20,65),(6,81,21,66),(7,82,22,67),(8,83,23,68),(9,84,24,69),(10,85,25,70),(11,86,26,71),(12,87,27,72),(13,88,28,73),(14,89,29,74),(15,90,30,75),(31,106,46,91),(32,107,47,92),(33,108,48,93),(34,109,49,94),(35,110,50,95),(36,111,51,96),(37,112,52,97),(38,113,53,98),(39,114,54,99),(40,115,55,100),(41,116,56,101),(42,117,57,102),(43,118,58,103),(44,119,59,104),(45,120,60,105)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,95),(2,94),(3,93),(4,92),(5,91),(6,100),(7,99),(8,98),(9,97),(10,96),(11,105),(12,104),(13,103),(14,102),(15,101),(16,110),(17,109),(18,108),(19,107),(20,106),(21,115),(22,114),(23,113),(24,112),(25,111),(26,120),(27,119),(28,118),(29,117),(30,116),(31,80),(32,79),(33,78),(34,77),(35,76),(36,85),(37,84),(38,83),(39,82),(40,81),(41,90),(42,89),(43,88),(44,87),(45,86),(46,65),(47,64),(48,63),(49,62),(50,61),(51,70),(52,69),(53,68),(54,67),(55,66),(56,75),(57,74),(58,73),(59,72),(60,71)])

60 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 2H 2I 3 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 5A 5B 6A 6B 6C 6D 10A 10B 10C 10D 10E 10F 12A 12B 12C 12D 12E 15A 15B 20A ··· 20F 20G ··· 20L 30A 30B 60A ··· 60F order 1 2 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 6 10 10 10 10 10 10 12 12 12 12 12 15 15 20 ··· 20 20 ··· 20 30 30 60 ··· 60 size 1 1 3 3 10 10 10 30 30 30 2 2 2 2 5 5 6 6 6 15 15 2 2 2 20 20 20 2 2 6 6 6 6 4 4 4 10 10 4 4 4 ··· 4 12 ··· 12 4 4 8 ··· 8

60 irreducible representations

 dim 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 4 4 4 4 8 type + + + + + + + + + + + + + + + + + + + + image C1 C2 C2 C2 C2 C2 C2 C2 S3 D5 D6 D6 D6 C4○D4 D10 D10 D10 S3×D5 Q8⋊2D5 S3×C4○D4 C2×S3×D5 S3×Q8⋊2D5 kernel S3×Q8⋊2D5 D20⋊S3 C12.28D10 C4×S3×D5 S3×D20 C3×Q8⋊2D5 C5×S3×Q8 Q8⋊3D15 Q8⋊2D5 S3×Q8 C4×D5 D20 C5×Q8 C5×S3 Dic6 C4×S3 C3×Q8 Q8 S3 C5 C4 C1 # reps 1 3 3 3 3 1 1 1 1 2 3 3 1 4 6 6 2 2 4 2 6 2

Matrix representation of S3×Q82D5 in GL6(𝔽61)

 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 60 0 0 0 0 1 60
,
 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0
,
 50 0 0 0 0 0 0 11 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 60 0 0 0 0 0 0 60
,
 0 1 0 0 0 0 60 0 0 0 0 0 0 0 60 0 0 0 0 0 0 60 0 0 0 0 0 0 1 0 0 0 0 0 0 1
,
 1 0 0 0 0 0 0 1 0 0 0 0 0 0 18 60 0 0 0 0 19 60 0 0 0 0 0 0 1 0 0 0 0 0 0 1
,
 0 50 0 0 0 0 11 0 0 0 0 0 0 0 0 44 0 0 0 0 43 0 0 0 0 0 0 0 60 0 0 0 0 0 0 60

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,60,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[50,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[0,60,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,19,0,0,0,0,60,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,11,0,0,0,0,50,0,0,0,0,0,0,0,0,43,0,0,0,0,44,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60] >;

S3×Q82D5 in GAP, Magma, Sage, TeX

S_3\times Q_8\rtimes_2D_5
% in TeX

G:=Group("S3xQ8:2D5");
// GroupNames label

G:=SmallGroup(480,1109);
// by ID

G=gap.SmallGroup(480,1109);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,100,675,185,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^4=e^5=f^2=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=f*c*f=c^-1,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽