Extensions 1→N→G→Q→1 with N=D303C4 and Q=C2

Direct product G=N×Q with N=D303C4 and Q=C2
dρLabelID
C2×D303C4240C2xD30:3C4480,892

Semidirect products G=N:Q with N=D303C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D303C41C2 = C427D15φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:1C2480,840
D303C42C2 = C23.28D30φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:2C2480,894
D303C43C2 = C6029D4φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:3C2480,895
D303C44C2 = D3016D4φ: C2/C1C2 ⊆ Out D303C4120D30:3C4:4C2480,847
D303C45C2 = D30.28D4φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:5C2480,848
D303C46C2 = C23.11D30φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:6C2480,850
D303C47C2 = C22.D60φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:7C2480,851
D303C48C2 = C4⋊D60φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:8C2480,860
D303C49C2 = C22⋊C4×D15φ: C2/C1C2 ⊆ Out D303C4120D30:3C4:9C2480,845
D303C410C2 = Dic1519D4φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:10C2480,846
D303C411C2 = D309D4φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:11C2480,849
D303C412C2 = D6011C4φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:12C2480,858
D303C413C2 = (C2×C20).D6φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:13C2480,402
D303C414C2 = Dic3⋊D20φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:14C2480,485
D303C415C2 = D6.D20φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:15C2480,503
D303C416C2 = D30.7D4φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:16C2480,514
D303C417C2 = D64D20φ: C2/C1C2 ⊆ Out D303C4120D30:3C4:17C2480,550
D303C418C2 = D30.D4φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:18C2480,432
D303C419C2 = D10.16D12φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:19C2480,489
D303C420C2 = Dic5⋊D12φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:20C2480,492
D303C421C2 = (C2×Dic6)⋊D5φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:21C2480,531
D303C422C2 = D304D4φ: C2/C1C2 ⊆ Out D303C4120D30:3C4:22C2480,551
D303C423C2 = Dic3⋊C4⋊D5φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:23C2480,424
D303C424C2 = Dic5.8D12φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:24C2480,426
D303C425C2 = Dic54D12φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:25C2480,481
D303C426C2 = C1520(C4×D4)φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:26C2480,520
D303C427C2 = D10⋊D12φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:27C2480,524
D303C428C2 = D5×D6⋊C4φ: C2/C1C2 ⊆ Out D303C4120D30:3C4:28C2480,547
D303C429C2 = D6⋊Dic5⋊C2φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:29C2480,427
D303C430C2 = Dic3.D20φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:30C2480,429
D303C431C2 = Dic34D20φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:31C2480,471
D303C432C2 = C1522(C4×D4)φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:32C2480,522
D303C433C2 = D6⋊D20φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:33C2480,530
D303C434C2 = S3×D10⋊C4φ: C2/C1C2 ⊆ Out D303C4120D30:3C4:34C2480,548
D303C435C2 = D30.29D4φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:35C2480,859
D303C436C2 = D3017D4φ: C2/C1C2 ⊆ Out D303C4120D30:3C4:36C2480,902
D303C437C2 = Dic1512D4φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:37C2480,904
D303C438C2 = C60.23D4φ: C2/C1C2 ⊆ Out D303C4240D30:3C4:38C2480,912
D303C439C2 = C4×D60φ: trivial image240D30:3C4:39C2480,838
D303C440C2 = C4×C157D4φ: trivial image240D30:3C4:40C2480,893

Non-split extensions G=N.Q with N=D303C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D303C4.1C2 = C423D15φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.1C2480,841
D303C4.2C2 = D305Q8φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.2C2480,861
D303C4.3C2 = D306Q8φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.3C2480,862
D303C4.4C2 = C4⋊C4⋊D15φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.4C2480,863
D303C4.5C2 = C4⋊C47D15φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.5C2480,857
D303C4.6C2 = C4⋊Dic5⋊S3φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.6C2480,421
D303C4.7C2 = D30⋊Q8φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.7C2480,487
D303C4.8C2 = D304Q8φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.8C2480,505
D303C4.9C2 = C4⋊Dic3⋊D5φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.9C2480,413
D303C4.10C2 = D302Q8φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.10C2480,495
D303C4.11C2 = D303Q8φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.11C2480,500
D303C4.12C2 = (C4×Dic5)⋊S3φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.12C2480,463
D303C4.13C2 = D30.C2⋊C4φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.13C2480,478
D303C4.14C2 = C10.D4⋊S3φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.14C2480,456
D303C4.15C2 = D30.23(C2×C4)φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.15C2480,479
D303C4.16C2 = D307Q8φ: C2/C1C2 ⊆ Out D303C4240D30:3C4.16C2480,911
D303C4.17C2 = C422D15φ: trivial image240D30:3C4.17C2480,837

׿
×
𝔽