Copied to
clipboard

G = D3016D4order 480 = 25·3·5

1st semidirect product of D30 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D3016D4, C223D60, C23.19D30, (C2×C20)⋊3D6, (C2×C4)⋊1D30, (C2×C6)⋊3D20, (C2×C30)⋊1D4, (C2×D60)⋊5C2, (C2×C12)⋊3D10, (C2×C10)⋊6D12, C2.7(D4×D15), C6.98(D4×D5), C2.7(C2×D60), C1511C22≀C2, C52(D6⋊D4), (C2×C60)⋊2C22, C22⋊C42D15, C6.33(C2×D20), D303C44C2, C32(C22⋊D20), C10.100(S3×D4), C30.306(C2×D4), C10.34(C2×D12), (C23×D15)⋊1C2, (C22×C6).57D10, (C22×C10).72D6, (C2×C30).279C23, (C2×Dic15)⋊1C22, (C22×D15)⋊1C22, (C22×C30).13C22, C22.41(C22×D15), (C2×C157D4)⋊1C2, (C5×C22⋊C4)⋊3S3, (C3×C22⋊C4)⋊3D5, (C15×C22⋊C4)⋊5C2, (C2×C6).275(C22×D5), (C2×C10).274(C22×S3), SmallGroup(480,847)

Series: Derived Chief Lower central Upper central

C1C2×C30 — D3016D4
C1C5C15C30C2×C30C22×D15C23×D15 — D3016D4
C15C2×C30 — D3016D4
C1C22C22⋊C4

Generators and relations for D3016D4
 G = < a,b,c,d | a30=b2=c4=d2=1, bab=dad=a-1, ac=ca, cbc-1=a15b, dbd=a13b, dcd=c-1 >

Subgroups: 2084 in 260 conjugacy classes, 59 normal (25 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, S3, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C10, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C15, C22⋊C4, C22⋊C4, C2×D4, C24, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, D15, C30, C30, C30, C22≀C2, D20, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×C10, D6⋊C4, C3×C22⋊C4, C2×D12, C2×C3⋊D4, S3×C23, Dic15, C60, D30, D30, C2×C30, C2×C30, C2×C30, D10⋊C4, C5×C22⋊C4, C2×D20, C2×C5⋊D4, C23×D5, D6⋊D4, D60, C2×Dic15, C157D4, C2×C60, C22×D15, C22×D15, C22×D15, C22×C30, C22⋊D20, D303C4, C15×C22⋊C4, C2×D60, C2×C157D4, C23×D15, D3016D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, D12, C22×S3, D15, C22≀C2, D20, C22×D5, C2×D12, S3×D4, D30, C2×D20, D4×D5, D6⋊D4, D60, C22×D15, C22⋊D20, C2×D60, D4×D15, D3016D4

Smallest permutation representation of D3016D4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)(55 60)(56 59)(57 58)(61 77)(62 76)(63 75)(64 74)(65 73)(66 72)(67 71)(68 70)(78 90)(79 89)(80 88)(81 87)(82 86)(83 85)(91 95)(92 94)(96 120)(97 119)(98 118)(99 117)(100 116)(101 115)(102 114)(103 113)(104 112)(105 111)(106 110)(107 109)
(1 101 58 62)(2 102 59 63)(3 103 60 64)(4 104 31 65)(5 105 32 66)(6 106 33 67)(7 107 34 68)(8 108 35 69)(9 109 36 70)(10 110 37 71)(11 111 38 72)(12 112 39 73)(13 113 40 74)(14 114 41 75)(15 115 42 76)(16 116 43 77)(17 117 44 78)(18 118 45 79)(19 119 46 80)(20 120 47 81)(21 91 48 82)(22 92 49 83)(23 93 50 84)(24 94 51 85)(25 95 52 86)(26 96 53 87)(27 97 54 88)(28 98 55 89)(29 99 56 90)(30 100 57 61)
(1 62)(2 61)(3 90)(4 89)(5 88)(6 87)(7 86)(8 85)(9 84)(10 83)(11 82)(12 81)(13 80)(14 79)(15 78)(16 77)(17 76)(18 75)(19 74)(20 73)(21 72)(22 71)(23 70)(24 69)(25 68)(26 67)(27 66)(28 65)(29 64)(30 63)(31 98)(32 97)(33 96)(34 95)(35 94)(36 93)(37 92)(38 91)(39 120)(40 119)(41 118)(42 117)(43 116)(44 115)(45 114)(46 113)(47 112)(48 111)(49 110)(50 109)(51 108)(52 107)(53 106)(54 105)(55 104)(56 103)(57 102)(58 101)(59 100)(60 99)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(55,60)(56,59)(57,58)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(78,90)(79,89)(80,88)(81,87)(82,86)(83,85)(91,95)(92,94)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109), (1,101,58,62)(2,102,59,63)(3,103,60,64)(4,104,31,65)(5,105,32,66)(6,106,33,67)(7,107,34,68)(8,108,35,69)(9,109,36,70)(10,110,37,71)(11,111,38,72)(12,112,39,73)(13,113,40,74)(14,114,41,75)(15,115,42,76)(16,116,43,77)(17,117,44,78)(18,118,45,79)(19,119,46,80)(20,120,47,81)(21,91,48,82)(22,92,49,83)(23,93,50,84)(24,94,51,85)(25,95,52,86)(26,96,53,87)(27,97,54,88)(28,98,55,89)(29,99,56,90)(30,100,57,61), (1,62)(2,61)(3,90)(4,89)(5,88)(6,87)(7,86)(8,85)(9,84)(10,83)(11,82)(12,81)(13,80)(14,79)(15,78)(16,77)(17,76)(18,75)(19,74)(20,73)(21,72)(22,71)(23,70)(24,69)(25,68)(26,67)(27,66)(28,65)(29,64)(30,63)(31,98)(32,97)(33,96)(34,95)(35,94)(36,93)(37,92)(38,91)(39,120)(40,119)(41,118)(42,117)(43,116)(44,115)(45,114)(46,113)(47,112)(48,111)(49,110)(50,109)(51,108)(52,107)(53,106)(54,105)(55,104)(56,103)(57,102)(58,101)(59,100)(60,99)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(55,60)(56,59)(57,58)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(78,90)(79,89)(80,88)(81,87)(82,86)(83,85)(91,95)(92,94)(96,120)(97,119)(98,118)(99,117)(100,116)(101,115)(102,114)(103,113)(104,112)(105,111)(106,110)(107,109), (1,101,58,62)(2,102,59,63)(3,103,60,64)(4,104,31,65)(5,105,32,66)(6,106,33,67)(7,107,34,68)(8,108,35,69)(9,109,36,70)(10,110,37,71)(11,111,38,72)(12,112,39,73)(13,113,40,74)(14,114,41,75)(15,115,42,76)(16,116,43,77)(17,117,44,78)(18,118,45,79)(19,119,46,80)(20,120,47,81)(21,91,48,82)(22,92,49,83)(23,93,50,84)(24,94,51,85)(25,95,52,86)(26,96,53,87)(27,97,54,88)(28,98,55,89)(29,99,56,90)(30,100,57,61), (1,62)(2,61)(3,90)(4,89)(5,88)(6,87)(7,86)(8,85)(9,84)(10,83)(11,82)(12,81)(13,80)(14,79)(15,78)(16,77)(17,76)(18,75)(19,74)(20,73)(21,72)(22,71)(23,70)(24,69)(25,68)(26,67)(27,66)(28,65)(29,64)(30,63)(31,98)(32,97)(33,96)(34,95)(35,94)(36,93)(37,92)(38,91)(39,120)(40,119)(41,118)(42,117)(43,116)(44,115)(45,114)(46,113)(47,112)(48,111)(49,110)(50,109)(51,108)(52,107)(53,106)(54,105)(55,104)(56,103)(57,102)(58,101)(59,100)(60,99) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43),(55,60),(56,59),(57,58),(61,77),(62,76),(63,75),(64,74),(65,73),(66,72),(67,71),(68,70),(78,90),(79,89),(80,88),(81,87),(82,86),(83,85),(91,95),(92,94),(96,120),(97,119),(98,118),(99,117),(100,116),(101,115),(102,114),(103,113),(104,112),(105,111),(106,110),(107,109)], [(1,101,58,62),(2,102,59,63),(3,103,60,64),(4,104,31,65),(5,105,32,66),(6,106,33,67),(7,107,34,68),(8,108,35,69),(9,109,36,70),(10,110,37,71),(11,111,38,72),(12,112,39,73),(13,113,40,74),(14,114,41,75),(15,115,42,76),(16,116,43,77),(17,117,44,78),(18,118,45,79),(19,119,46,80),(20,120,47,81),(21,91,48,82),(22,92,49,83),(23,93,50,84),(24,94,51,85),(25,95,52,86),(26,96,53,87),(27,97,54,88),(28,98,55,89),(29,99,56,90),(30,100,57,61)], [(1,62),(2,61),(3,90),(4,89),(5,88),(6,87),(7,86),(8,85),(9,84),(10,83),(11,82),(12,81),(13,80),(14,79),(15,78),(16,77),(17,76),(18,75),(19,74),(20,73),(21,72),(22,71),(23,70),(24,69),(25,68),(26,67),(27,66),(28,65),(29,64),(30,63),(31,98),(32,97),(33,96),(34,95),(35,94),(36,93),(37,92),(38,91),(39,120),(40,119),(41,118),(42,117),(43,116),(44,115),(45,114),(46,113),(47,112),(48,111),(49,110),(50,109),(51,108),(52,107),(53,106),(54,105),(55,104),(56,103),(57,102),(58,101),(59,100),(60,99)]])

84 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C5A5B6A6B6C6D6E10A···10F10G10H10I10J12A12B12C12D15A15B15C15D20A···20H30A···30L30M···30T60A···60P
order122222222223444556666610···1010101010121212121515151520···2030···3030···3060···60
size11112230303030602446022222442···24444444422224···42···24···44···4

84 irreducible representations

dim11111122222222222222444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D5D6D6D10D10D12D15D20D30D30D60S3×D4D4×D5D4×D15
kernelD3016D4D303C4C15×C22⋊C4C2×D60C2×C157D4C23×D15C5×C22⋊C4D30C2×C30C3×C22⋊C4C2×C20C22×C10C2×C12C22×C6C2×C10C22⋊C4C2×C6C2×C4C23C22C10C6C2
# reps121211142221424488416248

Matrix representation of D3016D4 in GL6(𝔽61)

010000
60180000
00532000
0049700
0000600
0000060
,
2380000
56380000
00532000
006800
0000600
0000171
,
2540000
57360000
0060000
0006000
00004459
00002217
,
2860000
22330000
0060000
0045100
00004459
00002217

G:=sub<GL(6,GF(61))| [0,60,0,0,0,0,1,18,0,0,0,0,0,0,53,49,0,0,0,0,20,7,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[23,56,0,0,0,0,8,38,0,0,0,0,0,0,53,6,0,0,0,0,20,8,0,0,0,0,0,0,60,17,0,0,0,0,0,1],[25,57,0,0,0,0,4,36,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,44,22,0,0,0,0,59,17],[28,22,0,0,0,0,6,33,0,0,0,0,0,0,60,45,0,0,0,0,0,1,0,0,0,0,0,0,44,22,0,0,0,0,59,17] >;

D3016D4 in GAP, Magma, Sage, TeX

D_{30}\rtimes_{16}D_4
% in TeX

G:=Group("D30:16D4");
// GroupNames label

G:=SmallGroup(480,847);
// by ID

G=gap.SmallGroup(480,847);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,254,219,58,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^30=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^15*b,d*b*d=a^13*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽