Extensions 1→N→G→Q→1 with N=M4(2) and Q=C3×D5

Direct product G=N×Q with N=M4(2) and Q=C3×D5

Semidirect products G=N:Q with N=M4(2) and Q=C3×D5
extensionφ:Q→Out NdρLabelID
M4(2)⋊1(C3×D5) = C3×C8⋊D10φ: C3×D5/C15C2 ⊆ Out M4(2)1204M4(2):1(C3xD5)480,701
M4(2)⋊2(C3×D5) = C3×C8.D10φ: C3×D5/C15C2 ⊆ Out M4(2)2404M4(2):2(C3xD5)480,702
M4(2)⋊3(C3×D5) = C3×C20.46D4φ: C3×D5/C15C2 ⊆ Out M4(2)1204M4(2):3(C3xD5)480,101
M4(2)⋊4(C3×D5) = C3×D207C4φ: C3×D5/C15C2 ⊆ Out M4(2)1204M4(2):4(C3xD5)480,103
M4(2)⋊5(C3×D5) = C3×D20.2C4φ: trivial image2404M4(2):5(C3xD5)480,700

Non-split extensions G=N.Q with N=M4(2) and Q=C3×D5
extensionφ:Q→Out NdρLabelID
M4(2).1(C3×D5) = C3×C20.53D4φ: C3×D5/C15C2 ⊆ Out M4(2)2404M4(2).1(C3xD5)480,100
M4(2).2(C3×D5) = C3×C4.12D20φ: C3×D5/C15C2 ⊆ Out M4(2)2404M4(2).2(C3xD5)480,102