Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=Dic5

Direct product G=N×Q with N=C2×Dic3 and Q=Dic5
dρLabelID
C2×Dic3×Dic5480C2xDic3xDic5480,603

Semidirect products G=N:Q with N=C2×Dic3 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊Dic5 = C158(C23⋊C4)φ: Dic5/C5C4 ⊆ Out C2×Dic31204(C2xDic3):Dic5480,72
(C2×Dic3)⋊2Dic5 = C30.24C42φ: Dic5/C10C2 ⊆ Out C2×Dic3480(C2xDic3):2Dic5480,70
(C2×Dic3)⋊3Dic5 = C23.26(S3×D5)φ: Dic5/C10C2 ⊆ Out C2×Dic3240(C2xDic3):3Dic5480,605
(C2×Dic3)⋊4Dic5 = C2×C6.Dic10φ: Dic5/C10C2 ⊆ Out C2×Dic3480(C2xDic3):4Dic5480,621

Non-split extensions G=N.Q with N=C2×Dic3 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C2×Dic3).Dic5 = C60.54D4φ: Dic5/C5C4 ⊆ Out C2×Dic32404(C2xDic3).Dic5480,38
(C2×Dic3).2Dic5 = C30.22C42φ: Dic5/C10C2 ⊆ Out C2×Dic3480(C2xDic3).2Dic5480,29
(C2×Dic3).3Dic5 = C60.94D4φ: Dic5/C10C2 ⊆ Out C2×Dic3240(C2xDic3).3Dic5480,32
(C2×Dic3).4Dic5 = C60.15Q8φ: Dic5/C10C2 ⊆ Out C2×Dic3480(C2xDic3).4Dic5480,60
(C2×Dic3).5Dic5 = S3×C4.Dic5φ: Dic5/C10C2 ⊆ Out C2×Dic31204(C2xDic3).5Dic5480,363
(C2×Dic3).6Dic5 = C2×D6.Dic5φ: Dic5/C10C2 ⊆ Out C2×Dic3240(C2xDic3).6Dic5480,370
(C2×Dic3).7Dic5 = Dic3×C52C8φ: trivial image480(C2xDic3).7Dic5480,26
(C2×Dic3).8Dic5 = C2×S3×C52C8φ: trivial image240(C2xDic3).8Dic5480,361

׿
×
𝔽