Extensions 1→N→G→Q→1 with N=C3xC18 and Q=C9

Direct product G=NxQ with N=C3xC18 and Q=C9
dρLabelID
C3xC9xC18486C3xC9xC18486,190

Semidirect products G=N:Q with N=C3xC18 and Q=C9
extensionφ:Q→Aut NdρLabelID
(C3xC18):1C9 = C2xC3.C92φ: C9/C3C3 ⊆ Aut C3xC18486(C3xC18):1C9486,62
(C3xC18):2C9 = C2xC32.19He3φ: C9/C3C3 ⊆ Aut C3xC18162(C3xC18):2C9486,74
(C3xC18):3C9 = C2xC32.20He3φ: C9/C3C3 ⊆ Aut C3xC18162(C3xC18):3C9486,75
(C3xC18):4C9 = C6xC9:C9φ: C9/C3C3 ⊆ Aut C3xC18486(C3xC18):4C9486,192
(C3xC18):5C9 = C2xC92:3C3φ: C9/C3C3 ⊆ Aut C3xC18162(C3xC18):5C9486,193

Non-split extensions G=N.Q with N=C3xC18 and Q=C9
extensionφ:Q→Aut NdρLabelID
(C3xC18).1C9 = C2xC27:2C9φ: C9/C3C3 ⊆ Aut C3xC18486(C3xC18).1C9486,71
(C3xC18).2C9 = C2xC32:C27φ: C9/C3C3 ⊆ Aut C3xC18162(C3xC18).2C9486,72
(C3xC18).3C9 = C2xC9.4He3φ: C9/C3C3 ⊆ Aut C3xC18543(C3xC18).3C9486,76
(C3xC18).4C9 = C2xC9:C27φ: C9/C3C3 ⊆ Aut C3xC18486(C3xC18).4C9486,81
(C3xC18).5C9 = C2xC81:C3φ: C9/C3C3 ⊆ Aut C3xC181623(C3xC18).5C9486,84
(C3xC18).6C9 = C6xC27:C3φ: C9/C3C3 ⊆ Aut C3xC18162(C3xC18).6C9486,208

׿
x
:
Z
F
o
wr
Q
<