Extensions 1→N→G→Q→1 with N=He3⋊C3 and Q=S3

Direct product G=N×Q with N=He3⋊C3 and Q=S3

Semidirect products G=N:Q with N=He3⋊C3 and Q=S3
extensionφ:Q→Out NdρLabelID
He3⋊C3⋊S3 = C922S3φ: S3/C1S3 ⊆ Out He3⋊C3273He3:C3:S3486,61
He3⋊C32S3 = He3⋊C32S3φ: S3/C3C2 ⊆ Out He3⋊C3546He3:C3:2S3486,172
He3⋊C33S3 = He3⋊C33S3φ: S3/C3C2 ⊆ Out He3⋊C381He3:C3:3S3486,173
He3⋊C34S3 = C3≀C3.S3φ: S3/C3C2 ⊆ Out He3⋊C3276+He3:C3:4S3486,175
He3⋊C35S3 = C3⋊(He3⋊S3)φ: S3/C3C2 ⊆ Out He3⋊C381He3:C3:5S3486,187
He3⋊C36S3 = C3≀C3⋊S3φ: S3/C3C2 ⊆ Out He3⋊C3276+He3:C3:6S3486,189

Non-split extensions G=N.Q with N=He3⋊C3 and Q=S3
extensionφ:Q→Out NdρLabelID
He3⋊C3.1S3 = C92⋊C6φ: S3/C1S3 ⊆ Out He3⋊C3276+He3:C3.1S3486,35
He3⋊C3.2S3 = C922C6φ: S3/C1S3 ⊆ Out He3⋊C3276+He3:C3.2S3486,37