Copied to
clipboard

G = He3⋊C32S3order 486 = 2·35

1st semidirect product of He3⋊C3 and S3 acting via S3/C3=C2

non-abelian, supersoluble, monomial

Aliases: (C32×C9)⋊10S3, He3⋊C32S3, He35S34C3, C3⋊(He3.2C6), (C3×He3).12C6, He3.10(C3×S3), C33.45(C3×S3), C3.15(He34S3), C32.13(C32⋊C6), (C3×C9)⋊3(C3⋊S3), C32.6(C3×C3⋊S3), (C3×He3⋊C3)⋊3C2, SmallGroup(486,172)

Series: Derived Chief Lower central Upper central

C1C3C3×He3 — He3⋊C32S3
C1C3C32C33C3×He3C3×He3⋊C3 — He3⋊C32S3
C3×He3 — He3⋊C32S3
C1C3

Generators and relations for He3⋊C32S3
 G = < a,b,c,d,e,f | a3=b3=c3=d3=e3=f2=1, ab=ba, cac-1=dad-1=ab-1, ae=ea, faf=a-1b, bc=cb, bd=db, be=eb, bf=fb, dcd-1=abc, ce=ec, fcf=abcd, de=ed, fdf=d-1, fef=e-1 >

Subgroups: 704 in 96 conjugacy classes, 20 normal (12 characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, C32, C18, C3×S3, C3⋊S3, C3×C9, C3×C9, He3, He3, C33, C33, S3×C9, He3⋊C2, C3×C3⋊S3, He3⋊C3, He3⋊C3, C32×C9, C3×He3, C3×He3, He3.2C6, C9×C3⋊S3, He35S3, C3×He3⋊C3, He3⋊C32S3
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C32⋊C6, C3×C3⋊S3, He3.2C6, He34S3, He3⋊C32S3

Smallest permutation representation of He3⋊C32S3
On 54 points
Generators in S54
(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)
(1 5 4)(2 13 3)(6 15 7)(8 9 14)(10 12 11)(16 17 18)(19 20 21)(22 24 23)(25 26 27)(28 30 29)(31 32 33)(34 36 35)(37 38 39)(40 42 41)(43 44 45)(46 48 47)(49 50 51)(52 54 53)
(1 30 33)(2 41 26)(3 42 25)(4 28 32)(5 29 31)(6 53 38)(7 54 37)(8 36 51)(9 35 49)(10 47 20)(11 48 19)(12 46 21)(13 40 27)(14 34 50)(15 52 39)(16 24 43)(17 23 44)(18 22 45)
(1 41 21)(2 48 31)(3 46 33)(4 42 20)(5 40 19)(6 22 51)(7 23 50)(8 52 45)(9 54 43)(10 30 25)(11 28 27)(12 29 26)(13 47 32)(14 53 44)(15 24 49)(16 34 37)(17 36 38)(18 35 39)
(1 5 4)(2 13 3)(6 7 15)(8 14 9)(10 12 11)(16 18 17)(19 20 21)(22 23 24)(25 26 27)(28 30 29)(31 32 33)(34 35 36)(37 39 38)(40 42 41)(43 45 44)(46 48 47)(49 51 50)(52 53 54)
(1 44)(2 51)(3 50)(4 43)(5 45)(6 31)(7 33)(8 19)(9 20)(10 37)(11 39)(12 38)(13 49)(14 21)(15 32)(16 25)(17 26)(18 27)(22 48)(23 46)(24 47)(28 35)(29 36)(30 34)(40 52)(41 53)(42 54)

G:=sub<Sym(54)| (19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,5,4)(2,13,3)(6,15,7)(8,9,14)(10,12,11)(16,17,18)(19,20,21)(22,24,23)(25,26,27)(28,30,29)(31,32,33)(34,36,35)(37,38,39)(40,42,41)(43,44,45)(46,48,47)(49,50,51)(52,54,53), (1,30,33)(2,41,26)(3,42,25)(4,28,32)(5,29,31)(6,53,38)(7,54,37)(8,36,51)(9,35,49)(10,47,20)(11,48,19)(12,46,21)(13,40,27)(14,34,50)(15,52,39)(16,24,43)(17,23,44)(18,22,45), (1,41,21)(2,48,31)(3,46,33)(4,42,20)(5,40,19)(6,22,51)(7,23,50)(8,52,45)(9,54,43)(10,30,25)(11,28,27)(12,29,26)(13,47,32)(14,53,44)(15,24,49)(16,34,37)(17,36,38)(18,35,39), (1,5,4)(2,13,3)(6,7,15)(8,14,9)(10,12,11)(16,18,17)(19,20,21)(22,23,24)(25,26,27)(28,30,29)(31,32,33)(34,35,36)(37,39,38)(40,42,41)(43,45,44)(46,48,47)(49,51,50)(52,53,54), (1,44)(2,51)(3,50)(4,43)(5,45)(6,31)(7,33)(8,19)(9,20)(10,37)(11,39)(12,38)(13,49)(14,21)(15,32)(16,25)(17,26)(18,27)(22,48)(23,46)(24,47)(28,35)(29,36)(30,34)(40,52)(41,53)(42,54)>;

G:=Group( (19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,5,4)(2,13,3)(6,15,7)(8,9,14)(10,12,11)(16,17,18)(19,20,21)(22,24,23)(25,26,27)(28,30,29)(31,32,33)(34,36,35)(37,38,39)(40,42,41)(43,44,45)(46,48,47)(49,50,51)(52,54,53), (1,30,33)(2,41,26)(3,42,25)(4,28,32)(5,29,31)(6,53,38)(7,54,37)(8,36,51)(9,35,49)(10,47,20)(11,48,19)(12,46,21)(13,40,27)(14,34,50)(15,52,39)(16,24,43)(17,23,44)(18,22,45), (1,41,21)(2,48,31)(3,46,33)(4,42,20)(5,40,19)(6,22,51)(7,23,50)(8,52,45)(9,54,43)(10,30,25)(11,28,27)(12,29,26)(13,47,32)(14,53,44)(15,24,49)(16,34,37)(17,36,38)(18,35,39), (1,5,4)(2,13,3)(6,7,15)(8,14,9)(10,12,11)(16,18,17)(19,20,21)(22,23,24)(25,26,27)(28,30,29)(31,32,33)(34,35,36)(37,39,38)(40,42,41)(43,45,44)(46,48,47)(49,51,50)(52,53,54), (1,44)(2,51)(3,50)(4,43)(5,45)(6,31)(7,33)(8,19)(9,20)(10,37)(11,39)(12,38)(13,49)(14,21)(15,32)(16,25)(17,26)(18,27)(22,48)(23,46)(24,47)(28,35)(29,36)(30,34)(40,52)(41,53)(42,54) );

G=PermutationGroup([[(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54)], [(1,5,4),(2,13,3),(6,15,7),(8,9,14),(10,12,11),(16,17,18),(19,20,21),(22,24,23),(25,26,27),(28,30,29),(31,32,33),(34,36,35),(37,38,39),(40,42,41),(43,44,45),(46,48,47),(49,50,51),(52,54,53)], [(1,30,33),(2,41,26),(3,42,25),(4,28,32),(5,29,31),(6,53,38),(7,54,37),(8,36,51),(9,35,49),(10,47,20),(11,48,19),(12,46,21),(13,40,27),(14,34,50),(15,52,39),(16,24,43),(17,23,44),(18,22,45)], [(1,41,21),(2,48,31),(3,46,33),(4,42,20),(5,40,19),(6,22,51),(7,23,50),(8,52,45),(9,54,43),(10,30,25),(11,28,27),(12,29,26),(13,47,32),(14,53,44),(15,24,49),(16,34,37),(17,36,38),(18,35,39)], [(1,5,4),(2,13,3),(6,7,15),(8,14,9),(10,12,11),(16,18,17),(19,20,21),(22,23,24),(25,26,27),(28,30,29),(31,32,33),(34,35,36),(37,39,38),(40,42,41),(43,45,44),(46,48,47),(49,51,50),(52,53,54)], [(1,44),(2,51),(3,50),(4,43),(5,45),(6,31),(7,33),(8,19),(9,20),(10,37),(11,39),(12,38),(13,49),(14,21),(15,32),(16,25),(17,26),(18,27),(22,48),(23,46),(24,47),(28,35),(29,36),(30,34),(40,52),(41,53),(42,54)]])

39 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H3I···3Q6A6B9A···9F9G···9L18A···18F
order12333333333···3669···99···918···18
size1271122266618···1827273···36···627···27

39 irreducible representations

dim11112222366
type+++++
imageC1C2C3C6S3S3C3×S3C3×S3He3.2C6C32⋊C6He3⋊C32S3
kernelHe3⋊C32S3C3×He3⋊C3He35S3C3×He3He3⋊C3C32×C9He3C33C3C32C1
# reps112231621236

Matrix representation of He3⋊C32S3 in GL5(𝔽19)

10000
01000
001100
00010
00007
,
10000
01000
001100
000110
000011
,
110000
011000
000016
001700
000160
,
10000
01000
00001
00700
000110
,
018000
118000
00100
00010
00001
,
018000
180000
00080
001200
000018

G:=sub<GL(5,GF(19))| [1,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,1,0,0,0,0,0,7],[1,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,11,0,0,0,0,0,11],[11,0,0,0,0,0,11,0,0,0,0,0,0,17,0,0,0,0,0,16,0,0,16,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,11,0,0,1,0,0],[0,1,0,0,0,18,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,18,0,0,0,18,0,0,0,0,0,0,0,12,0,0,0,8,0,0,0,0,0,0,18] >;

He3⋊C32S3 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes C_3\rtimes_2S_3
% in TeX

G:=Group("He3:C3:2S3");
// GroupNames label

G:=SmallGroup(486,172);
// by ID

G=gap.SmallGroup(486,172);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,979,218,548,867,8104,1096]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=e^3=f^2=1,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^-1,a*e=e*a,f*a*f=a^-1*b,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=a*b*c,c*e=e*c,f*c*f=a*b*c*d,d*e=e*d,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽