non-abelian, supersoluble, monomial
Aliases: C3≀C3⋊2S3, C9○He3⋊2S3, (C32×C9)⋊21S3, He3.C3⋊2S3, C9.He3⋊2C2, He3⋊C3⋊6S3, He3.5(C3⋊S3), C3.He3⋊2S3, C33.41(C3⋊S3), C9.5(He3⋊C2), C3.7(He3⋊5S3), C32.5(C33⋊C2), 3- 1+2.2(C3⋊S3), (C3×C9).14(C3⋊S3), SmallGroup(486,189)
Series: Derived ►Chief ►Lower central ►Upper central
C9.He3 — C3≀C3⋊S3 |
Generators and relations for C3≀C3⋊S3
G = < a,b,c,d,e,f | a3=b3=c3=d3=e3=f2=1, eae-1=ab=ba, cac-1=faf=ab-1, ede-1=ad=da, bc=cb, bd=db, be=eb, fbf=b-1, dcd-1=ab-1c, ece-1=a-1c, fcf=a-1c-1, fdf=d-1, fef=e-1 >
Subgroups: 1060 in 119 conjugacy classes, 32 normal (12 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, He3, 3- 1+2, 3- 1+2, C33, C3×D9, C32⋊C6, C9⋊C6, C9⋊S3, C3×C3⋊S3, C3≀C3, He3.C3, He3⋊C3, C3.He3, C32×C9, C9○He3, C33⋊S3, He3.3S3, He3⋊S3, 3- 1+2.S3, C3×C9⋊S3, He3.4S3, C9.He3, C3≀C3⋊S3
Quotients: C1, C2, S3, C3⋊S3, He3⋊C2, C33⋊C2, He3⋊5S3, C3≀C3⋊S3
Character table of C3≀C3⋊S3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 9M | 9N | 9O | 9P | 9Q | |
size | 1 | 81 | 2 | 3 | 3 | 6 | 6 | 6 | 18 | 18 | 18 | 81 | 81 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | orthogonal lifted from S3 |
ρ12 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | orthogonal lifted from S3 |
ρ13 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ16 | 3 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | 3 | 3 | 3 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ17 | 3 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | 3 | 3 | 3 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | 3 | 3 | 3 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | 3 | 3 | 3 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ20 | 6 | 0 | -3 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ21 | 6 | 0 | -3 | 0 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ22 | 6 | 0 | -3 | 0 | 0 | -3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 0 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ23 | 6 | 0 | -3 | 0 | 0 | -3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 0 | 2ζ98-ζ94+ζ92+ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ24 | 6 | 0 | -3 | 0 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 0 | 2ζ98-ζ94+ζ92+ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | 0 | -3 | 0 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 0 | ζ95+2ζ94-ζ92+ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 6 | 0 | -3 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 6 | 0 | -3 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ97+3ζ92 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 0 | 2ζ98-ζ94+ζ92+ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 6 | 0 | -3 | 0 | 0 | -3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3ζ95+3ζ94 | 3ζ98+3ζ9 | 3ζ97+3ζ92 | 0 | ζ95+2ζ94-ζ92+ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 6 | 0 | 6 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | -3 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊5S3 |
ρ30 | 6 | 0 | 6 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | -3 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊5S3 |
(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(1 2 3)(4 5 6)(7 9 8)(10 12 11)(13 15 14)(16 17 18)(19 21 20)(22 23 24)(25 26 27)
(1 14 22)(2 13 23)(3 15 24)(4 11 16)(5 10 17)(6 12 18)(7 21 25)(8 19 27)(9 20 26)
(1 3 2)(4 6 5)(7 8 9)(16 18 17)(22 24 23)(25 27 26)
(1 26 11)(2 27 10)(3 25 12)(4 22 21)(5 23 20)(6 24 19)(7 16 15)(8 18 13)(9 17 14)
(1 16)(2 18)(3 17)(4 22)(5 24)(6 23)(7 26)(8 27)(9 25)(10 13)(11 15)(12 14)(19 20)
G:=sub<Sym(27)| (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,2,3)(4,5,6)(7,9,8)(10,12,11)(13,15,14)(16,17,18)(19,21,20)(22,23,24)(25,26,27), (1,14,22)(2,13,23)(3,15,24)(4,11,16)(5,10,17)(6,12,18)(7,21,25)(8,19,27)(9,20,26), (1,3,2)(4,6,5)(7,8,9)(16,18,17)(22,24,23)(25,27,26), (1,26,11)(2,27,10)(3,25,12)(4,22,21)(5,23,20)(6,24,19)(7,16,15)(8,18,13)(9,17,14), (1,16)(2,18)(3,17)(4,22)(5,24)(6,23)(7,26)(8,27)(9,25)(10,13)(11,15)(12,14)(19,20)>;
G:=Group( (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,2,3)(4,5,6)(7,9,8)(10,12,11)(13,15,14)(16,17,18)(19,21,20)(22,23,24)(25,26,27), (1,14,22)(2,13,23)(3,15,24)(4,11,16)(5,10,17)(6,12,18)(7,21,25)(8,19,27)(9,20,26), (1,3,2)(4,6,5)(7,8,9)(16,18,17)(22,24,23)(25,27,26), (1,26,11)(2,27,10)(3,25,12)(4,22,21)(5,23,20)(6,24,19)(7,16,15)(8,18,13)(9,17,14), (1,16)(2,18)(3,17)(4,22)(5,24)(6,23)(7,26)(8,27)(9,25)(10,13)(11,15)(12,14)(19,20) );
G=PermutationGroup([[(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(1,2,3),(4,5,6),(7,9,8),(10,12,11),(13,15,14),(16,17,18),(19,21,20),(22,23,24),(25,26,27)], [(1,14,22),(2,13,23),(3,15,24),(4,11,16),(5,10,17),(6,12,18),(7,21,25),(8,19,27),(9,20,26)], [(1,3,2),(4,6,5),(7,8,9),(16,18,17),(22,24,23),(25,27,26)], [(1,26,11),(2,27,10),(3,25,12),(4,22,21),(5,23,20),(6,24,19),(7,16,15),(8,18,13),(9,17,14)], [(1,16),(2,18),(3,17),(4,22),(5,24),(6,23),(7,26),(8,27),(9,25),(10,13),(11,15),(12,14),(19,20)]])
G:=TransitiveGroup(27,159);
Matrix representation of C3≀C3⋊S3 ►in GL6(𝔽19)
0 | 1 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 18 |
0 | 0 | 0 | 0 | 1 | 0 |
18 | 18 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 18 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 5 | 7 | 0 | 0 |
0 | 0 | 12 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 7 |
0 | 0 | 0 | 0 | 12 | 17 |
12 | 17 | 0 | 0 | 0 | 0 |
2 | 14 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 18 | 18 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
17 | 5 | 0 | 0 | 0 | 0 |
7 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 5 |
0 | 0 | 0 | 0 | 7 | 2 |
0 | 0 | 17 | 5 | 0 | 0 |
0 | 0 | 7 | 2 | 0 | 0 |
G:=sub<GL(6,GF(19))| [0,18,0,0,0,0,1,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,1,0,0,0,0,18,0],[18,1,0,0,0,0,18,0,0,0,0,0,0,0,18,1,0,0,0,0,18,0,0,0,0,0,0,0,18,1,0,0,0,0,18,0],[0,0,0,0,12,2,0,0,0,0,17,14,5,12,0,0,0,0,7,17,0,0,0,0,0,0,5,12,0,0,0,0,7,17,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,0,0,0,18,0,0,0,0,1,18],[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0],[17,7,0,0,0,0,5,2,0,0,0,0,0,0,0,0,17,7,0,0,0,0,5,2,0,0,17,7,0,0,0,0,5,2,0,0] >;
C3≀C3⋊S3 in GAP, Magma, Sage, TeX
C_3\wr C_3\rtimes S_3
% in TeX
G:=Group("C3wrC3:S3");
// GroupNames label
G:=SmallGroup(486,189);
// by ID
G=gap.SmallGroup(486,189);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1993,1951,218,867,303,11344,1096,11669]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^3=e^3=f^2=1,e*a*e^-1=a*b=b*a,c*a*c^-1=f*a*f=a*b^-1,e*d*e^-1=a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,d*c*d^-1=a*b^-1*c,e*c*e^-1=a^-1*c,f*c*f=a^-1*c^-1,f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations
Export