Extensions 1→N→G→Q→1 with N=C9 and Q=C2×He3

Direct product G=N×Q with N=C9 and Q=C2×He3

Semidirect products G=N:Q with N=C9 and Q=C2×He3
extensionφ:Q→Aut NdρLabelID
C9⋊(C2×He3) = D9⋊He3φ: C2×He3/C32C6 ⊆ Aut C9546C9:(C2xHe3)486,106
C92(C2×He3) = C2×C9⋊He3φ: C2×He3/C3×C6C3 ⊆ Aut C9162C9:2(C2xHe3)486,198
C93(C2×He3) = D9×He3φ: C2×He3/He3C2 ⊆ Aut C9546C9:3(C2xHe3)486,99

Non-split extensions G=N.Q with N=C9 and Q=C2×He3
extensionφ:Q→Aut NdρLabelID
C9.(C2×He3) = C2×C9.2He3φ: C2×He3/C3×C6C3 ⊆ Aut C9549C9.(C2xHe3)486,219
C9.2(C2×He3) = C2×C32⋊C27central extension (φ=1)162C9.2(C2xHe3)486,72
C9.3(C2×He3) = C2×C9.4He3central extension (φ=1)543C9.3(C2xHe3)486,76
C9.4(C2×He3) = C2×C9.5He3central extension (φ=1)1623C9.4(C2xHe3)486,79
C9.5(C2×He3) = C2×C9.6He3central extension (φ=1)1623C9.5(C2xHe3)486,80
C9.6(C2×He3) = C2×C9.He3central extension (φ=1)543C9.6(C2xHe3)486,214