# Extensions 1→N→G→Q→1 with N=C9 and Q=S3×C32

Direct product G=N×Q with N=C9 and Q=S3×C32
dρLabelID
S3×C32×C9162S3xC3^2xC9486,221

Semidirect products G=N:Q with N=C9 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
C9⋊(S3×C32) = C3×C33.S3φ: S3×C32/C32C6 ⊆ Aut C954C9:(S3xC3^2)486,232
C92(S3×C32) = C3×S3×3- 1+2φ: S3×C32/C3×S3C3 ⊆ Aut C954C9:2(S3xC3^2)486,225
C93(S3×C32) = C32×C9⋊S3φ: S3×C32/C33C2 ⊆ Aut C954C9:3(S3xC3^2)486,227

Non-split extensions G=N.Q with N=C9 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
C9.(S3×C32) = 3- 1+4⋊C2φ: S3×C32/C32C6 ⊆ Aut C92718+C9.(S3xC3^2)486,238
C9.2(S3×C32) = S3×C9○He3φ: S3×C32/C3×S3C3 ⊆ Aut C9546C9.2(S3xC3^2)486,226
C9.3(S3×C32) = C32×D27φ: S3×C32/C33C2 ⊆ Aut C9162C9.3(S3xC3^2)486,111
C9.4(S3×C32) = C3×C27⋊C6φ: S3×C32/C33C2 ⊆ Aut C9546C9.4(S3xC3^2)486,113
C9.5(S3×C32) = C3×He3.4S3φ: S3×C32/C33C2 ⊆ Aut C9546C9.5(S3xC3^2)486,234
C9.6(S3×C32) = S3×C3×C27central extension (φ=1)162C9.6(S3xC3^2)486,112
C9.7(S3×C32) = S3×C27⋊C3central extension (φ=1)546C9.7(S3xC3^2)486,114

׿
×
𝔽