Extensions 1→N→G→Q→1 with N=C6 and Q=C3×He3

Direct product G=N×Q with N=C6 and Q=C3×He3
dρLabelID
C3×C6×He3162C3xC6xHe3486,251


Non-split extensions G=N.Q with N=C6 and Q=C3×He3
extensionφ:Q→Aut NdρLabelID
C6.1(C3×He3) = C6×C32⋊C9central extension (φ=1)162C6.1(C3xHe3)486,191
C6.2(C3×He3) = C18×He3central extension (φ=1)162C6.2(C3xHe3)486,194
C6.3(C3×He3) = C2×C32⋊He3central extension (φ=1)54C6.3(C3xHe3)486,196
C6.4(C3×He3) = C2×C34.C3central extension (φ=1)54C6.4(C3xHe3)486,197
C6.5(C3×He3) = C2×C9⋊He3central extension (φ=1)162C6.5(C3xHe3)486,198
C6.6(C3×He3) = C2×C32.23C33central extension (φ=1)162C6.6(C3xHe3)486,199
C6.7(C3×He3) = C6×C3≀C3central extension (φ=1)54C6.7(C3xHe3)486,210
C6.8(C3×He3) = C6×He3.C3central extension (φ=1)162C6.8(C3xHe3)486,211
C6.9(C3×He3) = C6×He3⋊C3central extension (φ=1)162C6.9(C3xHe3)486,212
C6.10(C3×He3) = C6×C3.He3central extension (φ=1)162C6.10(C3xHe3)486,213
C6.11(C3×He3) = C2×C9.He3central extension (φ=1)543C6.11(C3xHe3)486,214
C6.12(C3×He3) = C2×C33⋊C32central extension (φ=1)549C6.12(C3xHe3)486,215
C6.13(C3×He3) = C2×He3.C32central extension (φ=1)549C6.13(C3xHe3)486,216
C6.14(C3×He3) = C2×He3⋊C32central extension (φ=1)549C6.14(C3xHe3)486,217
C6.15(C3×He3) = C2×C32.C33central extension (φ=1)549C6.15(C3xHe3)486,218
C6.16(C3×He3) = C2×C9.2He3central extension (φ=1)549C6.16(C3xHe3)486,219

׿
×
𝔽