direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C3×He3, C33⋊2C3, C32⋊C32, C3.1C33, SmallGroup(81,12)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C3×He3
G = < a,b,c,d | a3=b3=c3=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc-1, cd=dc >
Subgroups: 104 in 56 conjugacy classes, 32 normal (4 characteristic)
C1, C3, C3, C3, C32, C32, C32, He3, C33, C3×He3
Quotients: C1, C3, C32, He3, C33, C3×He3
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(1 9 16)(2 7 17)(3 8 18)(4 23 11)(5 24 12)(6 22 10)(13 27 20)(14 25 21)(15 26 19)
(1 10 15)(2 11 13)(3 12 14)(4 27 7)(5 25 8)(6 26 9)(16 22 19)(17 23 20)(18 24 21)
(1 21 7)(2 19 8)(3 20 9)(4 10 18)(5 11 16)(6 12 17)(13 22 25)(14 23 26)(15 24 27)
G:=sub<Sym(27)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,9,16)(2,7,17)(3,8,18)(4,23,11)(5,24,12)(6,22,10)(13,27,20)(14,25,21)(15,26,19), (1,10,15)(2,11,13)(3,12,14)(4,27,7)(5,25,8)(6,26,9)(16,22,19)(17,23,20)(18,24,21), (1,21,7)(2,19,8)(3,20,9)(4,10,18)(5,11,16)(6,12,17)(13,22,25)(14,23,26)(15,24,27)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,9,16)(2,7,17)(3,8,18)(4,23,11)(5,24,12)(6,22,10)(13,27,20)(14,25,21)(15,26,19), (1,10,15)(2,11,13)(3,12,14)(4,27,7)(5,25,8)(6,26,9)(16,22,19)(17,23,20)(18,24,21), (1,21,7)(2,19,8)(3,20,9)(4,10,18)(5,11,16)(6,12,17)(13,22,25)(14,23,26)(15,24,27) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(1,9,16),(2,7,17),(3,8,18),(4,23,11),(5,24,12),(6,22,10),(13,27,20),(14,25,21),(15,26,19)], [(1,10,15),(2,11,13),(3,12,14),(4,27,7),(5,25,8),(6,26,9),(16,22,19),(17,23,20),(18,24,21)], [(1,21,7),(2,19,8),(3,20,9),(4,10,18),(5,11,16),(6,12,17),(13,22,25),(14,23,26),(15,24,27)]])
G:=TransitiveGroup(27,18);
C3×He3 is a maximal subgroup of
He3⋊4S3 He3⋊5S3 C32.24He3 C33.C32 C32.27He3 He3⋊C9 C32⋊He3 C9⋊He3 C32.23C33 C33⋊C32 He3.C32 He3⋊C32 3+ 1+4 3- 1+4
C3×He3 is a maximal quotient of
C32⋊He3 C34.C3 C9⋊He3 C32.23C33 C9.He3 C33⋊C32 He3.C32 He3⋊C32 C32.C33 C9.2He3
33 conjugacy classes
class | 1 | 3A | ··· | 3H | 3I | ··· | 3AF |
order | 1 | 3 | ··· | 3 | 3 | ··· | 3 |
size | 1 | 1 | ··· | 1 | 3 | ··· | 3 |
33 irreducible representations
dim | 1 | 1 | 1 | 3 |
type | + | |||
image | C1 | C3 | C3 | He3 |
kernel | C3×He3 | He3 | C33 | C3 |
# reps | 1 | 18 | 8 | 6 |
Matrix representation of C3×He3 ►in GL4(𝔽7) generated by
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 2 |
4 | 0 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 5 | 5 | 2 |
0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 3 | 3 | 4 |
0 | 5 | 4 | 4 |
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[4,0,0,0,0,0,5,0,0,2,5,0,0,0,2,2],[1,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[1,0,0,0,0,0,3,5,0,1,3,4,0,0,4,4] >;
C3×He3 in GAP, Magma, Sage, TeX
C_3\times {\rm He}_3
% in TeX
G:=Group("C3xHe3");
// GroupNames label
G:=SmallGroup(81,12);
// by ID
G=gap.SmallGroup(81,12);
# by ID
G:=PCGroup([4,-3,3,3,-3,241]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^3=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^-1,c*d=d*c>;
// generators/relations