# Extensions 1→N→G→Q→1 with N=C3×3- 1+2 and Q=S3

Direct product G=N×Q with N=C3×3- 1+2 and Q=S3
dρLabelID
C3×S3×3- 1+254C3xS3xES-(3,1)486,225

Semidirect products G=N:Q with N=C3×3- 1+2 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×3- 1+2)⋊1S3 = (C3×He3).S3φ: S3/C1S3 ⊆ Out C3×3- 1+281(C3xES-(3,1)):1S3486,44
(C3×3- 1+2)⋊2S3 = C34.7S3φ: S3/C1S3 ⊆ Out C3×3- 1+2186(C3xES-(3,1)):2S3486,147
(C3×3- 1+2)⋊3S3 = C9⋊He32C2φ: S3/C1S3 ⊆ Out C3×3- 1+281(C3xES-(3,1)):3S3486,148
(C3×3- 1+2)⋊4S3 = (C32×C9)⋊S3φ: S3/C1S3 ⊆ Out C3×3- 1+2546(C3xES-(3,1)):4S3486,149
(C3×3- 1+2)⋊5S3 = C3×C33⋊S3φ: S3/C1S3 ⊆ Out C3×3- 1+2186(C3xES-(3,1)):5S3486,165
(C3×3- 1+2)⋊6S3 = C3×He3.3S3φ: S3/C1S3 ⊆ Out C3×3- 1+2546(C3xES-(3,1)):6S3486,168
(C3×3- 1+2)⋊7S3 = C33⋊(C3×S3)φ: S3/C1S3 ⊆ Out C3×3- 1+22718+(C3xES-(3,1)):7S3486,176
(C3×3- 1+2)⋊8S3 = He3.C32C6φ: S3/C1S3 ⊆ Out C3×3- 1+22718+(C3xES-(3,1)):8S3486,177
(C3×3- 1+2)⋊9S3 = He3⋊(C3×S3)φ: S3/C1S3 ⊆ Out C3×3- 1+22718+(C3xES-(3,1)):9S3486,178
(C3×3- 1+2)⋊10S3 = C347S3φ: S3/C1S3 ⊆ Out C3×3- 1+227(C3xES-(3,1)):10S3486,185
(C3×3- 1+2)⋊11S3 = He3.(C3⋊S3)φ: S3/C1S3 ⊆ Out C3×3- 1+281(C3xES-(3,1)):11S3486,186
(C3×3- 1+2)⋊12S3 = 3- 1+4⋊C2φ: S3/C1S3 ⊆ Out C3×3- 1+22718+(C3xES-(3,1)):12S3486,238
(C3×3- 1+2)⋊13S3 = C34.C6φ: S3/C1S3 ⊆ Out C3×3- 1+2186(C3xES-(3,1)):13S3486,104
(C3×3- 1+2)⋊14S3 = C9⋊He3⋊C2φ: S3/C1S3 ⊆ Out C3×3- 1+2546(C3xES-(3,1)):14S3486,107
(C3×3- 1+2)⋊15S3 = He3.C3⋊C6φ: S3/C1S3 ⊆ Out C3×3- 1+2279(C3xES-(3,1)):15S3486,128
(C3×3- 1+2)⋊16S3 = He3.(C3×C6)φ: S3/C1S3 ⊆ Out C3×3- 1+2279(C3xES-(3,1)):16S3486,130
(C3×3- 1+2)⋊17S3 = C3≀C3.C6φ: S3/C1S3 ⊆ Out C3×3- 1+2279(C3xES-(3,1)):17S3486,132
(C3×3- 1+2)⋊18S3 = 3- 1+42C2φ: S3/C1S3 ⊆ Out C3×3- 1+2279(C3xES-(3,1)):18S3486,239
(C3×3- 1+2)⋊19S3 = C3×C33.S3φ: S3/C3C2 ⊆ Out C3×3- 1+254(C3xES-(3,1)):19S3486,232
(C3×3- 1+2)⋊20S3 = C3×He3.4S3φ: S3/C3C2 ⊆ Out C3×3- 1+2546(C3xES-(3,1)):20S3486,234
(C3×3- 1+2)⋊21S3 = C34.11S3φ: S3/C3C2 ⊆ Out C3×3- 1+281(C3xES-(3,1)):21S3486,244
(C3×3- 1+2)⋊22S3 = C9○He33S3φ: S3/C3C2 ⊆ Out C3×3- 1+281(C3xES-(3,1)):22S3486,245
(C3×3- 1+2)⋊23S3 = C3⋊S3×3- 1+2φ: S3/C3C2 ⊆ Out C3×3- 1+254(C3xES-(3,1)):23S3486,233

Non-split extensions G=N.Q with N=C3×3- 1+2 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×3- 1+2).1S3 = C33.(C3⋊S3)φ: S3/C1S3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).1S3486,45
(C3×3- 1+2).2S3 = C3.(C33⋊S3)φ: S3/C1S3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).2S3486,47
(C3×3- 1+2).3S3 = 3- 1+2⋊D9φ: S3/C1S3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).3S3486,57
(C3×3- 1+2).4S3 = C9210C6φ: S3/C1S3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).4S3486,154
(C3×3- 1+2).5S3 = C9211C6φ: S3/C1S3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).5S3486,158
(C3×3- 1+2).6S3 = C9212C6φ: S3/C1S3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).6S3486,159
(C3×3- 1+2).7S3 = C3×3- 1+2.S3φ: S3/C1S3 ⊆ Out C3×3- 1+2546(C3xES-(3,1)).7S3486,174
(C3×3- 1+2).8S3 = C3.He3⋊C6φ: S3/C1S3 ⊆ Out C3×3- 1+22718+(C3xES-(3,1)).8S3486,179
(C3×3- 1+2).9S3 = (C32×C9).S3φ: S3/C1S3 ⊆ Out C3×3- 1+281(C3xES-(3,1)).9S3486,188
(C3×3- 1+2).10S3 = D9⋊3- 1+2φ: S3/C1S3 ⊆ Out C3×3- 1+2546(C3xES-(3,1)).10S3486,108
(C3×3- 1+2).11S3 = C927C6φ: S3/C1S3 ⊆ Out C3×3- 1+2546(C3xES-(3,1)).11S3486,109
(C3×3- 1+2).12S3 = C928C6φ: S3/C1S3 ⊆ Out C3×3- 1+2186(C3xES-(3,1)).12S3486,110
(C3×3- 1+2).13S3 = C929C6φ: S3/C3C2 ⊆ Out C3×3- 1+281(C3xES-(3,1)).13S3486,144
(C3×3- 1+2).14S3 = D9×3- 1+2φ: S3/C3C2 ⊆ Out C3×3- 1+2546(C3xES-(3,1)).14S3486,101

׿
×
𝔽