non-abelian, supersoluble, monomial
Aliases: (C32×C9)⋊19S3, He3.C3⋊1S3, He3.4(C3⋊S3), C3⋊(He3.3S3), (C3×He3).19S3, C33.38(C3⋊S3), C3.4(He3⋊5S3), 3- 1+2⋊2(C3⋊S3), (C3×3- 1+2)⋊11S3, C32.2(C33⋊C2), C32.28(He3⋊C2), (C3×C9)⋊5(C3⋊S3), (C3×He3.C3)⋊2C2, SmallGroup(486,186)
Series: Derived ►Chief ►Lower central ►Upper central
C3×He3.C3 — He3.(C3⋊S3) |
Generators and relations for He3.(C3⋊S3)
G = < a,b,c,d,e | a3=b3=c9=d3=e2=1, ab=ba, ac=ca, dad-1=ac6, eae=abc3, bc=cb, bd=db, ebe=b-1, dcd-1=a-1bc, ece=c-1, ede=d-1 >
Subgroups: 1168 in 126 conjugacy classes, 35 normal (9 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, He3, He3, 3- 1+2, 3- 1+2, C33, C33, C3×D9, C32⋊C6, C9⋊C6, C9⋊S3, C3×C3⋊S3, C33⋊C2, He3.C3, C32×C9, C3×He3, C3×3- 1+2, He3.3S3, C3×C9⋊S3, He3⋊4S3, C33.S3, C3×He3.C3, He3.(C3⋊S3)
Quotients: C1, C2, S3, C3⋊S3, He3⋊C2, C33⋊C2, He3.3S3, He3⋊5S3, He3.(C3⋊S3)
Character table of He3.(C3⋊S3)
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 9M | 9N | 9O | |
size | 1 | 81 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 18 | 18 | 18 | 81 | 81 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 2 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | 2 | orthogonal lifted from S3 |
ρ15 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ16 | 3 | -1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ17 | 3 | 1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | 1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | -1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ20 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ21 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ22 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ23 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ24 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ25 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ26 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ27 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ28 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | ζ98+ζ94-ζ92+2ζ9 | ζ98+ζ97-ζ94+2ζ92 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ94-ζ92+2ζ9 | 2ζ95+ζ94+ζ92-ζ9 | ζ98+ζ97-ζ94+2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from He3.3S3 |
ρ29 | 6 | 0 | 6 | -3 | -3 | -3 | -3+3√-3 | -3-3√-3 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊5S3 |
ρ30 | 6 | 0 | 6 | -3 | -3 | -3 | -3-3√-3 | -3+3√-3 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊5S3 |
(1 62 23)(2 63 24)(3 55 25)(4 56 26)(5 57 27)(6 58 19)(7 59 20)(8 60 21)(9 61 22)(10 37 47)(11 38 48)(12 39 49)(13 40 50)(14 41 51)(15 42 52)(16 43 53)(17 44 54)(18 45 46)(28 67 77)(29 68 78)(30 69 79)(31 70 80)(32 71 81)(33 72 73)(34 64 74)(35 65 75)(36 66 76)
(1 48 75)(2 49 76)(3 50 77)(4 51 78)(5 52 79)(6 53 80)(7 54 81)(8 46 73)(9 47 74)(10 34 61)(11 35 62)(12 36 63)(13 28 55)(14 29 56)(15 30 57)(16 31 58)(17 32 59)(18 33 60)(19 43 70)(20 44 71)(21 45 72)(22 37 64)(23 38 65)(24 39 66)(25 40 67)(26 41 68)(27 42 69)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(2 30 39)(3 37 28)(5 33 42)(6 40 31)(8 36 45)(9 43 34)(10 74 19)(11 14 17)(12 21 73)(13 77 22)(15 24 76)(16 80 25)(18 27 79)(20 26 23)(29 32 35)(38 44 41)(46 63 72)(47 70 61)(49 57 66)(50 64 55)(52 60 69)(53 67 58)(56 59 62)(65 71 68)
(2 9)(3 8)(4 7)(5 6)(10 57)(11 56)(12 55)(13 63)(14 62)(15 61)(16 60)(17 59)(18 58)(19 66)(20 65)(21 64)(22 72)(23 71)(24 70)(25 69)(26 68)(27 67)(28 36)(29 35)(30 34)(31 33)(37 45)(38 44)(39 43)(40 42)(46 77)(47 76)(48 75)(49 74)(50 73)(51 81)(52 80)(53 79)(54 78)
G:=sub<Sym(81)| (1,62,23)(2,63,24)(3,55,25)(4,56,26)(5,57,27)(6,58,19)(7,59,20)(8,60,21)(9,61,22)(10,37,47)(11,38,48)(12,39,49)(13,40,50)(14,41,51)(15,42,52)(16,43,53)(17,44,54)(18,45,46)(28,67,77)(29,68,78)(30,69,79)(31,70,80)(32,71,81)(33,72,73)(34,64,74)(35,65,75)(36,66,76), (1,48,75)(2,49,76)(3,50,77)(4,51,78)(5,52,79)(6,53,80)(7,54,81)(8,46,73)(9,47,74)(10,34,61)(11,35,62)(12,36,63)(13,28,55)(14,29,56)(15,30,57)(16,31,58)(17,32,59)(18,33,60)(19,43,70)(20,44,71)(21,45,72)(22,37,64)(23,38,65)(24,39,66)(25,40,67)(26,41,68)(27,42,69), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,30,39)(3,37,28)(5,33,42)(6,40,31)(8,36,45)(9,43,34)(10,74,19)(11,14,17)(12,21,73)(13,77,22)(15,24,76)(16,80,25)(18,27,79)(20,26,23)(29,32,35)(38,44,41)(46,63,72)(47,70,61)(49,57,66)(50,64,55)(52,60,69)(53,67,58)(56,59,62)(65,71,68), (2,9)(3,8)(4,7)(5,6)(10,57)(11,56)(12,55)(13,63)(14,62)(15,61)(16,60)(17,59)(18,58)(19,66)(20,65)(21,64)(22,72)(23,71)(24,70)(25,69)(26,68)(27,67)(28,36)(29,35)(30,34)(31,33)(37,45)(38,44)(39,43)(40,42)(46,77)(47,76)(48,75)(49,74)(50,73)(51,81)(52,80)(53,79)(54,78)>;
G:=Group( (1,62,23)(2,63,24)(3,55,25)(4,56,26)(5,57,27)(6,58,19)(7,59,20)(8,60,21)(9,61,22)(10,37,47)(11,38,48)(12,39,49)(13,40,50)(14,41,51)(15,42,52)(16,43,53)(17,44,54)(18,45,46)(28,67,77)(29,68,78)(30,69,79)(31,70,80)(32,71,81)(33,72,73)(34,64,74)(35,65,75)(36,66,76), (1,48,75)(2,49,76)(3,50,77)(4,51,78)(5,52,79)(6,53,80)(7,54,81)(8,46,73)(9,47,74)(10,34,61)(11,35,62)(12,36,63)(13,28,55)(14,29,56)(15,30,57)(16,31,58)(17,32,59)(18,33,60)(19,43,70)(20,44,71)(21,45,72)(22,37,64)(23,38,65)(24,39,66)(25,40,67)(26,41,68)(27,42,69), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,30,39)(3,37,28)(5,33,42)(6,40,31)(8,36,45)(9,43,34)(10,74,19)(11,14,17)(12,21,73)(13,77,22)(15,24,76)(16,80,25)(18,27,79)(20,26,23)(29,32,35)(38,44,41)(46,63,72)(47,70,61)(49,57,66)(50,64,55)(52,60,69)(53,67,58)(56,59,62)(65,71,68), (2,9)(3,8)(4,7)(5,6)(10,57)(11,56)(12,55)(13,63)(14,62)(15,61)(16,60)(17,59)(18,58)(19,66)(20,65)(21,64)(22,72)(23,71)(24,70)(25,69)(26,68)(27,67)(28,36)(29,35)(30,34)(31,33)(37,45)(38,44)(39,43)(40,42)(46,77)(47,76)(48,75)(49,74)(50,73)(51,81)(52,80)(53,79)(54,78) );
G=PermutationGroup([[(1,62,23),(2,63,24),(3,55,25),(4,56,26),(5,57,27),(6,58,19),(7,59,20),(8,60,21),(9,61,22),(10,37,47),(11,38,48),(12,39,49),(13,40,50),(14,41,51),(15,42,52),(16,43,53),(17,44,54),(18,45,46),(28,67,77),(29,68,78),(30,69,79),(31,70,80),(32,71,81),(33,72,73),(34,64,74),(35,65,75),(36,66,76)], [(1,48,75),(2,49,76),(3,50,77),(4,51,78),(5,52,79),(6,53,80),(7,54,81),(8,46,73),(9,47,74),(10,34,61),(11,35,62),(12,36,63),(13,28,55),(14,29,56),(15,30,57),(16,31,58),(17,32,59),(18,33,60),(19,43,70),(20,44,71),(21,45,72),(22,37,64),(23,38,65),(24,39,66),(25,40,67),(26,41,68),(27,42,69)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(2,30,39),(3,37,28),(5,33,42),(6,40,31),(8,36,45),(9,43,34),(10,74,19),(11,14,17),(12,21,73),(13,77,22),(15,24,76),(16,80,25),(18,27,79),(20,26,23),(29,32,35),(38,44,41),(46,63,72),(47,70,61),(49,57,66),(50,64,55),(52,60,69),(53,67,58),(56,59,62),(65,71,68)], [(2,9),(3,8),(4,7),(5,6),(10,57),(11,56),(12,55),(13,63),(14,62),(15,61),(16,60),(17,59),(18,58),(19,66),(20,65),(21,64),(22,72),(23,71),(24,70),(25,69),(26,68),(27,67),(28,36),(29,35),(30,34),(31,33),(37,45),(38,44),(39,43),(40,42),(46,77),(47,76),(48,75),(49,74),(50,73),(51,81),(52,80),(53,79),(54,78)]])
Matrix representation of He3.(C3⋊S3) ►in GL8(𝔽19)
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 12 | 12 | 8 | 8 | 17 | 18 |
0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 11 | 0 |
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 13 | 8 | 1 | 12 | 17 |
0 | 0 | 14 | 9 | 17 | 12 | 14 | 12 |
0 | 0 | 10 | 12 | 9 | 2 | 5 | 7 |
0 | 0 | 4 | 11 | 15 | 10 | 17 | 5 |
0 | 0 | 1 | 0 | 7 | 0 | 16 | 11 |
0 | 0 | 13 | 5 | 14 | 9 | 2 | 18 |
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 8 | 18 | 18 |
0 | 0 | 0 | 0 | 11 | 0 | 1 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 11 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 11 | 1 | 0 |
G:=sub<GL(8,GF(19))| [0,1,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,0,0,0,12,0,1,0,0,0,0,0,12,0,0,0,0,1,0,0,8,0,0,0,0,0,1,0,8,0,0,0,0,0,0,18,17,11,11,0,0,0,0,1,18,0,0],[0,1,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[18,18,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,14,10,4,1,13,0,0,13,9,12,11,0,5,0,0,8,17,9,15,7,14,0,0,1,12,2,10,0,9,0,0,12,14,5,17,16,2,0,0,17,12,7,5,11,18],[0,1,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,1,0,0,0,12,0,0,0,0,1,0,0,12,0,0,0,0,0,18,18,0,11,0,0,0,0,1,0,8,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,18,0],[18,18,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,18,11,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
He3.(C3⋊S3) in GAP, Magma, Sage, TeX
{\rm He}_3.(C_3\rtimes S_3)
% in TeX
G:=Group("He3.(C3:S3)");
// GroupNames label
G:=SmallGroup(486,186);
// by ID
G=gap.SmallGroup(486,186);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,49,218,8643,303,237,11344,1096,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^9=d^3=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*c^6,e*a*e=a*b*c^3,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=a^-1*b*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export