Copied to
clipboard

G = He3.(C3⋊S3)  order 486 = 2·35

4th non-split extension by He3 of C3⋊S3 acting via C3⋊S3/C3=S3

non-abelian, supersoluble, monomial

Aliases: (C32×C9)⋊19S3, He3.C31S3, He3.4(C3⋊S3), C3⋊(He3.3S3), (C3×He3).19S3, C33.38(C3⋊S3), C3.4(He35S3), 3- 1+22(C3⋊S3), (C3×3- 1+2)⋊11S3, C32.2(C33⋊C2), C32.28(He3⋊C2), (C3×C9)⋊5(C3⋊S3), (C3×He3.C3)⋊2C2, SmallGroup(486,186)

Series: Derived Chief Lower central Upper central

C1C32C3×He3.C3 — He3.(C3⋊S3)
C1C3C32C3×C9He3.C3C3×He3.C3 — He3.(C3⋊S3)
C3×He3.C3 — He3.(C3⋊S3)
C1

Generators and relations for He3.(C3⋊S3)
 G = < a,b,c,d,e | a3=b3=c9=d3=e2=1, ab=ba, ac=ca, dad-1=ac6, eae=abc3, bc=cb, bd=db, ebe=b-1, dcd-1=a-1bc, ece=c-1, ede=d-1 >

Subgroups: 1168 in 126 conjugacy classes, 35 normal (9 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, He3, He3, 3- 1+2, 3- 1+2, C33, C33, C3×D9, C32⋊C6, C9⋊C6, C9⋊S3, C3×C3⋊S3, C33⋊C2, He3.C3, C32×C9, C3×He3, C3×3- 1+2, He3.3S3, C3×C9⋊S3, He34S3, C33.S3, C3×He3.C3, He3.(C3⋊S3)
Quotients: C1, C2, S3, C3⋊S3, He3⋊C2, C33⋊C2, He3.3S3, He35S3, He3.(C3⋊S3)

Character table of He3.(C3⋊S3)

 class 123A3B3C3D3E3F3G3H3I3J3K6A6B9A9B9C9D9E9F9G9H9I9J9K9L9M9N9O
 size 181222233661818188181666666666181818181818
ρ1111111111111111111111111111111    trivial
ρ21-111111111111-1-1111111111111111    linear of order 2
ρ3202-1-1-122-1-1-1-1200-1-1-1222-1-1-1-1-122-1-1    orthogonal lifted from S3
ρ42022222222-1-1-100222222222-1-1-1-1-1-1    orthogonal lifted from S3
ρ52022222222-1-1-100-1-1-1-1-1-1-1-1-122-12-1-1    orthogonal lifted from S3
ρ6202-1-1-122-1-12-1-100-1-1-1-1-1-1222-1-1-12-12    orthogonal lifted from S3
ρ7202-1-1-122-1-1-12-100222-1-1-1-1-1-1-1-1-122-1    orthogonal lifted from S3
ρ8202-1-1-122-1-12-1-100222-1-1-1-1-1-12-12-1-1-1    orthogonal lifted from S3
ρ9202-1-1-122-1-1-1-1200-1-1-1-1-1-12222-1-1-12-1    orthogonal lifted from S3
ρ10202-1-1-122-1-1-12-100-1-1-1222-1-1-12-1-1-1-12    orthogonal lifted from S3
ρ11202222222222200-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ12202-1-1-122-1-12-1-100-1-1-1222-1-1-1-12-1-12-1    orthogonal lifted from S3
ρ13202-1-1-122-1-1-12-100-1-1-1-1-1-1222-122-1-1-1    orthogonal lifted from S3
ρ142022222222-1-1-100-1-1-1-1-1-1-1-1-1-1-12-122    orthogonal lifted from S3
ρ15202-1-1-122-1-1-1-1200222-1-1-1-1-1-1-12-1-1-12    orthogonal lifted from S3
ρ163-13333-3-3-3/2-3+3-3/2-3+3-3/2-3-3-3/2000ζ65ζ6000000000000000    complex lifted from He3⋊C2
ρ17313333-3+3-3/2-3-3-3/2-3-3-3/2-3+3-3/2000ζ32ζ3000000000000000    complex lifted from He3⋊C2
ρ18313333-3-3-3/2-3+3-3/2-3+3-3/2-3-3-3/2000ζ3ζ32000000000000000    complex lifted from He3⋊C2
ρ193-13333-3+3-3/2-3-3-3/2-3-3-3/2-3+3-3/2000ζ6ζ65000000000000000    complex lifted from He3⋊C2
ρ2060-36-3-3000000000ζ989794+2ζ92ζ989492+2ζ995949299594929ζ989492+2ζ9ζ989794+2ζ92ζ989492+2ζ99594929ζ989794+2ζ92000000    orthogonal lifted from He3.3S3
ρ2160-3-3-360000000009594929ζ989794+2ζ92ζ989492+2ζ99594929ζ989492+2ζ9ζ989794+2ζ929594929ζ989794+2ζ92ζ989492+2ζ9000000    orthogonal lifted from He3.3S3
ρ2260-36-3-3000000000ζ989492+2ζ99594929ζ989794+2ζ92ζ989794+2ζ929594929ζ989492+2ζ99594929ζ989794+2ζ92ζ989492+2ζ9000000    orthogonal lifted from He3.3S3
ρ2360-3-36-30000000009594929ζ989794+2ζ92ζ989492+2ζ9ζ989794+2ζ929594929ζ989492+2ζ9ζ989492+2ζ99594929ζ989794+2ζ92000000    orthogonal lifted from He3.3S3
ρ2460-36-3-30000000009594929ζ989794+2ζ92ζ989492+2ζ9ζ989492+2ζ9ζ989794+2ζ929594929ζ989794+2ζ92ζ989492+2ζ99594929000000    orthogonal lifted from He3.3S3
ρ2560-3-36-3000000000ζ989492+2ζ99594929ζ989794+2ζ929594929ζ989492+2ζ9ζ989794+2ζ92ζ989794+2ζ92ζ989492+2ζ99594929000000    orthogonal lifted from He3.3S3
ρ2660-3-3-36000000000ζ989794+2ζ92ζ989492+2ζ99594929ζ989794+2ζ929594929ζ989492+2ζ9ζ989794+2ζ92ζ989492+2ζ99594929000000    orthogonal lifted from He3.3S3
ρ2760-3-36-3000000000ζ989794+2ζ92ζ989492+2ζ99594929ζ989492+2ζ9ζ989794+2ζ9295949299594929ζ989794+2ζ92ζ989492+2ζ9000000    orthogonal lifted from He3.3S3
ρ2860-3-3-36000000000ζ989492+2ζ99594929ζ989794+2ζ92ζ989492+2ζ9ζ989794+2ζ929594929ζ989492+2ζ99594929ζ989794+2ζ92000000    orthogonal lifted from He3.3S3
ρ29606-3-3-3-3+3-3-3-3-33+3-3/23-3-3/200000000000000000000    complex lifted from He35S3
ρ30606-3-3-3-3-3-3-3+3-33-3-3/23+3-3/200000000000000000000    complex lifted from He35S3

Smallest permutation representation of He3.(C3⋊S3)
On 81 points
Generators in S81
(1 62 23)(2 63 24)(3 55 25)(4 56 26)(5 57 27)(6 58 19)(7 59 20)(8 60 21)(9 61 22)(10 37 47)(11 38 48)(12 39 49)(13 40 50)(14 41 51)(15 42 52)(16 43 53)(17 44 54)(18 45 46)(28 67 77)(29 68 78)(30 69 79)(31 70 80)(32 71 81)(33 72 73)(34 64 74)(35 65 75)(36 66 76)
(1 48 75)(2 49 76)(3 50 77)(4 51 78)(5 52 79)(6 53 80)(7 54 81)(8 46 73)(9 47 74)(10 34 61)(11 35 62)(12 36 63)(13 28 55)(14 29 56)(15 30 57)(16 31 58)(17 32 59)(18 33 60)(19 43 70)(20 44 71)(21 45 72)(22 37 64)(23 38 65)(24 39 66)(25 40 67)(26 41 68)(27 42 69)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(2 30 39)(3 37 28)(5 33 42)(6 40 31)(8 36 45)(9 43 34)(10 74 19)(11 14 17)(12 21 73)(13 77 22)(15 24 76)(16 80 25)(18 27 79)(20 26 23)(29 32 35)(38 44 41)(46 63 72)(47 70 61)(49 57 66)(50 64 55)(52 60 69)(53 67 58)(56 59 62)(65 71 68)
(2 9)(3 8)(4 7)(5 6)(10 57)(11 56)(12 55)(13 63)(14 62)(15 61)(16 60)(17 59)(18 58)(19 66)(20 65)(21 64)(22 72)(23 71)(24 70)(25 69)(26 68)(27 67)(28 36)(29 35)(30 34)(31 33)(37 45)(38 44)(39 43)(40 42)(46 77)(47 76)(48 75)(49 74)(50 73)(51 81)(52 80)(53 79)(54 78)

G:=sub<Sym(81)| (1,62,23)(2,63,24)(3,55,25)(4,56,26)(5,57,27)(6,58,19)(7,59,20)(8,60,21)(9,61,22)(10,37,47)(11,38,48)(12,39,49)(13,40,50)(14,41,51)(15,42,52)(16,43,53)(17,44,54)(18,45,46)(28,67,77)(29,68,78)(30,69,79)(31,70,80)(32,71,81)(33,72,73)(34,64,74)(35,65,75)(36,66,76), (1,48,75)(2,49,76)(3,50,77)(4,51,78)(5,52,79)(6,53,80)(7,54,81)(8,46,73)(9,47,74)(10,34,61)(11,35,62)(12,36,63)(13,28,55)(14,29,56)(15,30,57)(16,31,58)(17,32,59)(18,33,60)(19,43,70)(20,44,71)(21,45,72)(22,37,64)(23,38,65)(24,39,66)(25,40,67)(26,41,68)(27,42,69), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,30,39)(3,37,28)(5,33,42)(6,40,31)(8,36,45)(9,43,34)(10,74,19)(11,14,17)(12,21,73)(13,77,22)(15,24,76)(16,80,25)(18,27,79)(20,26,23)(29,32,35)(38,44,41)(46,63,72)(47,70,61)(49,57,66)(50,64,55)(52,60,69)(53,67,58)(56,59,62)(65,71,68), (2,9)(3,8)(4,7)(5,6)(10,57)(11,56)(12,55)(13,63)(14,62)(15,61)(16,60)(17,59)(18,58)(19,66)(20,65)(21,64)(22,72)(23,71)(24,70)(25,69)(26,68)(27,67)(28,36)(29,35)(30,34)(31,33)(37,45)(38,44)(39,43)(40,42)(46,77)(47,76)(48,75)(49,74)(50,73)(51,81)(52,80)(53,79)(54,78)>;

G:=Group( (1,62,23)(2,63,24)(3,55,25)(4,56,26)(5,57,27)(6,58,19)(7,59,20)(8,60,21)(9,61,22)(10,37,47)(11,38,48)(12,39,49)(13,40,50)(14,41,51)(15,42,52)(16,43,53)(17,44,54)(18,45,46)(28,67,77)(29,68,78)(30,69,79)(31,70,80)(32,71,81)(33,72,73)(34,64,74)(35,65,75)(36,66,76), (1,48,75)(2,49,76)(3,50,77)(4,51,78)(5,52,79)(6,53,80)(7,54,81)(8,46,73)(9,47,74)(10,34,61)(11,35,62)(12,36,63)(13,28,55)(14,29,56)(15,30,57)(16,31,58)(17,32,59)(18,33,60)(19,43,70)(20,44,71)(21,45,72)(22,37,64)(23,38,65)(24,39,66)(25,40,67)(26,41,68)(27,42,69), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (2,30,39)(3,37,28)(5,33,42)(6,40,31)(8,36,45)(9,43,34)(10,74,19)(11,14,17)(12,21,73)(13,77,22)(15,24,76)(16,80,25)(18,27,79)(20,26,23)(29,32,35)(38,44,41)(46,63,72)(47,70,61)(49,57,66)(50,64,55)(52,60,69)(53,67,58)(56,59,62)(65,71,68), (2,9)(3,8)(4,7)(5,6)(10,57)(11,56)(12,55)(13,63)(14,62)(15,61)(16,60)(17,59)(18,58)(19,66)(20,65)(21,64)(22,72)(23,71)(24,70)(25,69)(26,68)(27,67)(28,36)(29,35)(30,34)(31,33)(37,45)(38,44)(39,43)(40,42)(46,77)(47,76)(48,75)(49,74)(50,73)(51,81)(52,80)(53,79)(54,78) );

G=PermutationGroup([[(1,62,23),(2,63,24),(3,55,25),(4,56,26),(5,57,27),(6,58,19),(7,59,20),(8,60,21),(9,61,22),(10,37,47),(11,38,48),(12,39,49),(13,40,50),(14,41,51),(15,42,52),(16,43,53),(17,44,54),(18,45,46),(28,67,77),(29,68,78),(30,69,79),(31,70,80),(32,71,81),(33,72,73),(34,64,74),(35,65,75),(36,66,76)], [(1,48,75),(2,49,76),(3,50,77),(4,51,78),(5,52,79),(6,53,80),(7,54,81),(8,46,73),(9,47,74),(10,34,61),(11,35,62),(12,36,63),(13,28,55),(14,29,56),(15,30,57),(16,31,58),(17,32,59),(18,33,60),(19,43,70),(20,44,71),(21,45,72),(22,37,64),(23,38,65),(24,39,66),(25,40,67),(26,41,68),(27,42,69)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(2,30,39),(3,37,28),(5,33,42),(6,40,31),(8,36,45),(9,43,34),(10,74,19),(11,14,17),(12,21,73),(13,77,22),(15,24,76),(16,80,25),(18,27,79),(20,26,23),(29,32,35),(38,44,41),(46,63,72),(47,70,61),(49,57,66),(50,64,55),(52,60,69),(53,67,58),(56,59,62),(65,71,68)], [(2,9),(3,8),(4,7),(5,6),(10,57),(11,56),(12,55),(13,63),(14,62),(15,61),(16,60),(17,59),(18,58),(19,66),(20,65),(21,64),(22,72),(23,71),(24,70),(25,69),(26,68),(27,67),(28,36),(29,35),(30,34),(31,33),(37,45),(38,44),(39,43),(40,42),(46,77),(47,76),(48,75),(49,74),(50,73),(51,81),(52,80),(53,79),(54,78)]])

Matrix representation of He3.(C3⋊S3) in GL8(𝔽19)

018000000
118000000
00001000
00000100
000000181
001212881718
000000110
001000110
,
018000000
118000000
00100000
00010000
00001000
00000100
00000010
00000001
,
181000000
180000000
00113811217
0014917121412
0010129257
004111510175
0010701611
00135149218
,
018000000
118000000
00100000
00010000
000018100
000018000
001212081818
000011010
,
180000000
181000000
00010000
00100000
000011800
000001800
000001101
000001110

G:=sub<GL(8,GF(19))| [0,1,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,0,0,0,12,0,1,0,0,0,0,0,12,0,0,0,0,1,0,0,8,0,0,0,0,0,1,0,8,0,0,0,0,0,0,18,17,11,11,0,0,0,0,1,18,0,0],[0,1,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[18,18,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,14,10,4,1,13,0,0,13,9,12,11,0,5,0,0,8,17,9,15,7,14,0,0,1,12,2,10,0,9,0,0,12,14,5,17,16,2,0,0,17,12,7,5,11,18],[0,1,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,1,0,0,0,12,0,0,0,0,1,0,0,12,0,0,0,0,0,18,18,0,11,0,0,0,0,1,0,8,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,18,0],[18,18,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,18,11,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

He3.(C3⋊S3) in GAP, Magma, Sage, TeX

{\rm He}_3.(C_3\rtimes S_3)
% in TeX

G:=Group("He3.(C3:S3)");
// GroupNames label

G:=SmallGroup(486,186);
// by ID

G=gap.SmallGroup(486,186);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,49,218,8643,303,237,11344,1096,11669]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^9=d^3=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*c^6,e*a*e=a*b*c^3,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=a^-1*b*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

Export

Character table of He3.(C3⋊S3) in TeX

׿
×
𝔽