# Extensions 1→N→G→Q→1 with N=C32 and Q=C33⋊C2

Direct product G=N×Q with N=C32 and Q=C33⋊C2
dρLabelID
C32×C33⋊C254C3^2xC3^3:C2486,258

Semidirect products G=N:Q with N=C32 and Q=C33⋊C2
extensionφ:Q→Aut NdρLabelID
C321(C33⋊C2) = C3410C6φ: C33⋊C2/C32S3 ⊆ Aut C3281C3^2:1(C3^3:C2)486,242
C322(C33⋊C2) = C3413S3φ: C33⋊C2/C32S3 ⊆ Aut C3254C3^2:2(C3^3:C2)486,248
C323(C33⋊C2) = C3×C34⋊C2φ: C33⋊C2/C33C2 ⊆ Aut C32162C3^2:3(C3^3:C2)486,259
C324(C33⋊C2) = C35⋊C2φ: C33⋊C2/C33C2 ⊆ Aut C32243C3^2:4(C3^3:C2)486,260

Non-split extensions G=N.Q with N=C32 and Q=C33⋊C2
extensionφ:Q→Aut NdρLabelID
C32.1(C33⋊C2) = C347S3φ: C33⋊C2/C32S3 ⊆ Aut C3227C3^2.1(C3^3:C2)486,185
C32.2(C33⋊C2) = He3.(C3⋊S3)φ: C33⋊C2/C32S3 ⊆ Aut C3281C3^2.2(C3^3:C2)486,186
C32.3(C33⋊C2) = C3⋊(He3⋊S3)φ: C33⋊C2/C32S3 ⊆ Aut C3281C3^2.3(C3^3:C2)486,187
C32.4(C33⋊C2) = (C32×C9).S3φ: C33⋊C2/C32S3 ⊆ Aut C3281C3^2.4(C3^3:C2)486,188
C32.5(C33⋊C2) = C3≀C3⋊S3φ: C33⋊C2/C32S3 ⊆ Aut C32276+C3^2.5(C3^3:C2)486,189
C32.6(C33⋊C2) = C34.11S3φ: C33⋊C2/C32S3 ⊆ Aut C3281C3^2.6(C3^3:C2)486,244
C32.7(C33⋊C2) = C9○He33S3φ: C33⋊C2/C32S3 ⊆ Aut C3281C3^2.7(C3^3:C2)486,245
C32.8(C33⋊C2) = 3+ 1+43C2φ: C33⋊C2/C32S3 ⊆ Aut C32279C3^2.8(C3^3:C2)486,249
C32.9(C33⋊C2) = C928S3φ: C33⋊C2/C33C2 ⊆ Aut C32243C3^2.9(C3^3:C2)486,180
C32.10(C33⋊C2) = C336D9φ: C33⋊C2/C33C2 ⊆ Aut C3254C3^2.10(C3^3:C2)486,181
C32.11(C33⋊C2) = He34D9φ: C33⋊C2/C33C2 ⊆ Aut C32546C3^2.11(C3^3:C2)486,182
C32.12(C33⋊C2) = C3×C324D9φ: C33⋊C2/C33C2 ⊆ Aut C32162C3^2.12(C3^3:C2)486,240
C32.13(C33⋊C2) = C339D9φ: C33⋊C2/C33C2 ⊆ Aut C32243C3^2.13(C3^3:C2)486,247
C32.14(C33⋊C2) = C3×He35S3central extension (φ=1)54C3^2.14(C3^3:C2)486,243
C32.15(C33⋊C2) = C346S3central stem extension (φ=1)27C3^2.15(C3^3:C2)486,183

׿
×
𝔽