Copied to
clipboard

G = He34D9order 486 = 2·35

2nd semidirect product of He3 and D9 acting via D9/C9=C2

non-abelian, supersoluble, monomial

Aliases: He34D9, (C9×He3)⋊5C2, C9⋊(He3⋊C2), C32⋊C916S3, C322(C9⋊S3), (C32×C9)⋊18S3, (C3×He3).23S3, C33.37(C3⋊S3), C3.2(He35S3), C3.4(C324D9), C32.11(C33⋊C2), (C3×C9).21(C3⋊S3), SmallGroup(486,182)

Series: Derived Chief Lower central Upper central

C1C3C9×He3 — He34D9
C1C3C32C33C3×He3C9×He3 — He34D9
C9×He3 — He34D9
C1C3

Generators and relations for He34D9
 G = < a,b,c,d,e | a3=b3=c3=d9=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 1420 in 172 conjugacy classes, 54 normal (9 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C32, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, C3×C9, He3, C33, C3×D9, C9⋊S3, He3⋊C2, C3×C3⋊S3, C32⋊C9, C32×C9, C3×He3, C322D9, C3×C9⋊S3, He35S3, C9×He3, He34D9
Quotients: C1, C2, S3, D9, C3⋊S3, C9⋊S3, He3⋊C2, C33⋊C2, C324D9, He35S3, He34D9

Smallest permutation representation of He34D9
On 54 points
Generators in S54
(1 33 42)(2 34 43)(3 35 44)(4 36 45)(5 28 37)(6 29 38)(7 30 39)(8 31 40)(9 32 41)(10 47 27)(11 48 19)(12 49 20)(13 50 21)(14 51 22)(15 52 23)(16 53 24)(17 54 25)(18 46 26)
(1 4 7)(2 5 8)(3 6 9)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 52 49)(47 53 50)(48 54 51)
(1 45 36)(2 37 28)(3 38 29)(4 39 30)(5 40 31)(6 41 32)(7 42 33)(8 43 34)(9 44 35)(10 24 53)(11 25 54)(12 26 46)(13 27 47)(14 19 48)(15 20 49)(16 21 50)(17 22 51)(18 23 52)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 13)(2 12)(3 11)(4 10)(5 18)(6 17)(7 16)(8 15)(9 14)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(27 36)(37 46)(38 54)(39 53)(40 52)(41 51)(42 50)(43 49)(44 48)(45 47)

G:=sub<Sym(54)| (1,33,42)(2,34,43)(3,35,44)(4,36,45)(5,28,37)(6,29,38)(7,30,39)(8,31,40)(9,32,41)(10,47,27)(11,48,19)(12,49,20)(13,50,21)(14,51,22)(15,52,23)(16,53,24)(17,54,25)(18,46,26), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,52,49)(47,53,50)(48,54,51), (1,45,36)(2,37,28)(3,38,29)(4,39,30)(5,40,31)(6,41,32)(7,42,33)(8,43,34)(9,44,35)(10,24,53)(11,25,54)(12,26,46)(13,27,47)(14,19,48)(15,20,49)(16,21,50)(17,22,51)(18,23,52), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,46)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)>;

G:=Group( (1,33,42)(2,34,43)(3,35,44)(4,36,45)(5,28,37)(6,29,38)(7,30,39)(8,31,40)(9,32,41)(10,47,27)(11,48,19)(12,49,20)(13,50,21)(14,51,22)(15,52,23)(16,53,24)(17,54,25)(18,46,26), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,52,49)(47,53,50)(48,54,51), (1,45,36)(2,37,28)(3,38,29)(4,39,30)(5,40,31)(6,41,32)(7,42,33)(8,43,34)(9,44,35)(10,24,53)(11,25,54)(12,26,46)(13,27,47)(14,19,48)(15,20,49)(16,21,50)(17,22,51)(18,23,52), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,46)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47) );

G=PermutationGroup([[(1,33,42),(2,34,43),(3,35,44),(4,36,45),(5,28,37),(6,29,38),(7,30,39),(8,31,40),(9,32,41),(10,47,27),(11,48,19),(12,49,20),(13,50,21),(14,51,22),(15,52,23),(16,53,24),(17,54,25),(18,46,26)], [(1,4,7),(2,5,8),(3,6,9),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,52,49),(47,53,50),(48,54,51)], [(1,45,36),(2,37,28),(3,38,29),(4,39,30),(5,40,31),(6,41,32),(7,42,33),(8,43,34),(9,44,35),(10,24,53),(11,25,54),(12,26,46),(13,27,47),(14,19,48),(15,20,49),(16,21,50),(17,22,51),(18,23,52)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,13),(2,12),(3,11),(4,10),(5,18),(6,17),(7,16),(8,15),(9,14),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(27,36),(37,46),(38,54),(39,53),(40,52),(41,51),(42,50),(43,49),(44,48),(45,47)]])

54 conjugacy classes

class 1  2 3A3B3C3D3E3F···3Q6A6B9A···9I9J···9AG
order12333333···3669···99···9
size181112226···681812···26···6

54 irreducible representations

dim112222366
type++++++
imageC1C2S3S3S3D9He3⋊C2He35S3He34D9
kernelHe34D9C9×He3C32⋊C9C32×C9C3×He3He3C9C3C1
# reps1184127426

Matrix representation of He34D9 in GL5(𝔽19)

1716000
11000
00100
00070
000011
,
10000
01000
001100
000110
000011
,
10000
01000
00001
00800
000120
,
164000
512000
00100
00010
00001
,
10000
1818000
00100
00008
000120

G:=sub<GL(5,GF(19))| [17,1,0,0,0,16,1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,11],[1,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,11,0,0,0,0,0,11],[1,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,12,0,0,1,0,0],[16,5,0,0,0,4,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,18,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,8,0] >;

He34D9 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_4D_9
% in TeX

G:=Group("He3:4D9");
// GroupNames label

G:=SmallGroup(486,182);
// by ID

G=gap.SmallGroup(486,182);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,697,655,218,867,735,3244]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^9=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽