# Extensions 1→N→G→Q→1 with N=C92 and Q=C6

Direct product G=N×Q with N=C92 and Q=C6
dρLabelID
C3×C9×C18486C3xC9xC18486,190

Semidirect products G=N:Q with N=C92 and Q=C6
extensionφ:Q→Aut NdρLabelID
C921C6 = C92⋊C6φ: C6/C1C6 ⊆ Aut C92276+C9^2:1C6486,35
C922C6 = C922C6φ: C6/C1C6 ⊆ Aut C92276+C9^2:2C6486,37
C923C6 = C923C6φ: C6/C1C6 ⊆ Aut C9281C9^2:3C6486,141
C924C6 = C924C6φ: C6/C1C6 ⊆ Aut C9281C9^2:4C6486,155
C925C6 = C925C6φ: C6/C1C6 ⊆ Aut C9281C9^2:5C6486,157
C926C6 = C9×C9⋊C6φ: C6/C1C6 ⊆ Aut C92546C9^2:6C6486,100
C927C6 = C927C6φ: C6/C1C6 ⊆ Aut C92546C9^2:7C6486,109
C928C6 = C928C6φ: C6/C1C6 ⊆ Aut C92186C9^2:8C6486,110
C929C6 = C929C6φ: C6/C1C6 ⊆ Aut C9281C9^2:9C6486,144
C9210C6 = C9210C6φ: C6/C1C6 ⊆ Aut C9281C9^2:10C6486,154
C9211C6 = C9211C6φ: C6/C1C6 ⊆ Aut C9281C9^2:11C6486,158
C9212C6 = C9212C6φ: C6/C1C6 ⊆ Aut C9281C9^2:12C6486,159
C9213C6 = D9×3- 1+2φ: C6/C1C6 ⊆ Aut C92546C9^2:13C6486,101
C9214C6 = C2×C92⋊C3φ: C6/C2C3 ⊆ Aut C92543C9^2:14C6486,85
C9215C6 = C2×C922C3φ: C6/C2C3 ⊆ Aut C92543C9^2:15C6486,86
C9216C6 = C2×C923C3φ: C6/C2C3 ⊆ Aut C92162C9^2:16C6486,193
C9217C6 = C2×C924C3φ: C6/C2C3 ⊆ Aut C92162C9^2:17C6486,203
C9218C6 = C2×C925C3φ: C6/C2C3 ⊆ Aut C92162C9^2:18C6486,204
C9219C6 = C18×3- 1+2φ: C6/C2C3 ⊆ Aut C92162C9^2:19C6486,195
C9220C6 = C2×C927C3φ: C6/C2C3 ⊆ Aut C92162C9^2:20C6486,202
C9221C6 = C2×C928C3φ: C6/C2C3 ⊆ Aut C92162C9^2:21C6486,205
C9222C6 = C2×C929C3φ: C6/C2C3 ⊆ Aut C92162C9^2:22C6486,206
C9223C6 = D9×C3×C9φ: C6/C3C2 ⊆ Aut C9254C9^2:23C6486,91
C9224C6 = C3×C9⋊D9φ: C6/C3C2 ⊆ Aut C92162C9^2:24C6486,134

Non-split extensions G=N.Q with N=C92 and Q=C6
extensionφ:Q→Aut NdρLabelID
C92.C6 = C9⋊C54φ: C6/C1C6 ⊆ Aut C92546C9^2.C6486,30
C92.2C6 = C2×C272C9φ: C6/C2C3 ⊆ Aut C92486C9^2.2C6486,71
C92.3C6 = C2×C92.C3φ: C6/C2C3 ⊆ Aut C92543C9^2.3C6486,87
C92.4C6 = C2×C9⋊C27φ: C6/C2C3 ⊆ Aut C92486C9^2.4C6486,81
C92.5C6 = D9×C27φ: C6/C3C2 ⊆ Aut C92542C9^2.5C6486,14

׿
×
𝔽