Copied to
clipboard

G = D9×C3×C9order 486 = 2·35

Direct product of C3×C9 and D9

direct product, metabelian, supersoluble, monomial, A-group

Aliases: D9×C3×C9, C9223C6, C95(C3×C18), (C3×C92)⋊2C2, (C3×C9)⋊14C18, C3.4(C32×D9), (C32×C9).22S3, C32.15(S3×C9), C33.74(C3×S3), (C32×C9).29C6, (C32×D9).4C3, (C3×D9).7C32, C32.20(C3×D9), C32.27(S3×C32), C3.1(S3×C3×C9), (C3×C9).39(C3×C6), (C3×C9).50(C3×S3), SmallGroup(486,91)

Series: Derived Chief Lower central Upper central

C1C9 — D9×C3×C9
C1C3C9C3×C9C92C3×C92 — D9×C3×C9
C9 — D9×C3×C9
C1C3×C9

Generators and relations for D9×C3×C9
 G = < a,b,c,d | a3=b9=c9=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 256 in 108 conjugacy classes, 40 normal (16 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C9, C9, C32, C32, C32, D9, C18, C3×S3, C3×C6, C3×C9, C3×C9, C3×C9, C33, C3×D9, C3×D9, S3×C9, C3×C18, S3×C32, C92, C92, C32×C9, C32×C9, C9×D9, C32×D9, S3×C3×C9, C3×C92, D9×C3×C9
Quotients: C1, C2, C3, S3, C6, C9, C32, D9, C18, C3×S3, C3×C6, C3×C9, C3×D9, S3×C9, C3×C18, S3×C32, C9×D9, C32×D9, S3×C3×C9, D9×C3×C9

Smallest permutation representation of D9×C3×C9
On 54 points
Generators in S54
(1 29 45)(2 30 37)(3 31 38)(4 32 39)(5 33 40)(6 34 41)(7 35 42)(8 36 43)(9 28 44)(10 53 20)(11 54 21)(12 46 22)(13 47 23)(14 48 24)(15 49 25)(16 50 26)(17 51 27)(18 52 19)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 41 30 7 38 36 4 44 33)(2 42 31 8 39 28 5 45 34)(3 43 32 9 40 29 6 37 35)(10 48 19 13 51 22 16 54 25)(11 49 20 14 52 23 17 46 26)(12 50 21 15 53 24 18 47 27)
(1 26)(2 27)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 25)(10 32)(11 33)(12 34)(13 35)(14 36)(15 28)(16 29)(17 30)(18 31)(37 51)(38 52)(39 53)(40 54)(41 46)(42 47)(43 48)(44 49)(45 50)

G:=sub<Sym(54)| (1,29,45)(2,30,37)(3,31,38)(4,32,39)(5,33,40)(6,34,41)(7,35,42)(8,36,43)(9,28,44)(10,53,20)(11,54,21)(12,46,22)(13,47,23)(14,48,24)(15,49,25)(16,50,26)(17,51,27)(18,52,19), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,41,30,7,38,36,4,44,33)(2,42,31,8,39,28,5,45,34)(3,43,32,9,40,29,6,37,35)(10,48,19,13,51,22,16,54,25)(11,49,20,14,52,23,17,46,26)(12,50,21,15,53,24,18,47,27), (1,26)(2,27)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,32)(11,33)(12,34)(13,35)(14,36)(15,28)(16,29)(17,30)(18,31)(37,51)(38,52)(39,53)(40,54)(41,46)(42,47)(43,48)(44,49)(45,50)>;

G:=Group( (1,29,45)(2,30,37)(3,31,38)(4,32,39)(5,33,40)(6,34,41)(7,35,42)(8,36,43)(9,28,44)(10,53,20)(11,54,21)(12,46,22)(13,47,23)(14,48,24)(15,49,25)(16,50,26)(17,51,27)(18,52,19), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,41,30,7,38,36,4,44,33)(2,42,31,8,39,28,5,45,34)(3,43,32,9,40,29,6,37,35)(10,48,19,13,51,22,16,54,25)(11,49,20,14,52,23,17,46,26)(12,50,21,15,53,24,18,47,27), (1,26)(2,27)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,32)(11,33)(12,34)(13,35)(14,36)(15,28)(16,29)(17,30)(18,31)(37,51)(38,52)(39,53)(40,54)(41,46)(42,47)(43,48)(44,49)(45,50) );

G=PermutationGroup([[(1,29,45),(2,30,37),(3,31,38),(4,32,39),(5,33,40),(6,34,41),(7,35,42),(8,36,43),(9,28,44),(10,53,20),(11,54,21),(12,46,22),(13,47,23),(14,48,24),(15,49,25),(16,50,26),(17,51,27),(18,52,19)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,41,30,7,38,36,4,44,33),(2,42,31,8,39,28,5,45,34),(3,43,32,9,40,29,6,37,35),(10,48,19,13,51,22,16,54,25),(11,49,20,14,52,23,17,46,26),(12,50,21,15,53,24,18,47,27)], [(1,26),(2,27),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,25),(10,32),(11,33),(12,34),(13,35),(14,36),(15,28),(16,29),(17,30),(18,31),(37,51),(38,52),(39,53),(40,54),(41,46),(42,47),(43,48),(44,49),(45,50)]])

162 conjugacy classes

class 1  2 3A···3H3I···3Q6A···6H9A···9R9S···9DM18A···18R
order123···33···36···69···99···918···18
size191···12···29···91···12···29···9

162 irreducible representations

dim1111111122222222
type++++
imageC1C2C3C3C6C6C9C18S3D9C3×S3C3×S3C3×D9C3×D9S3×C9C9×D9
kernelD9×C3×C9C3×C92C9×D9C32×D9C92C32×C9C3×D9C3×C9C32×C9C3×C9C3×C9C33C9C32C32C3
# reps116262181813621861854

Matrix representation of D9×C3×C9 in GL3(𝔽19) generated by

1100
070
007
,
1100
090
009
,
100
050
004
,
100
004
050
G:=sub<GL(3,GF(19))| [11,0,0,0,7,0,0,0,7],[11,0,0,0,9,0,0,0,9],[1,0,0,0,5,0,0,0,4],[1,0,0,0,0,5,0,4,0] >;

D9×C3×C9 in GAP, Magma, Sage, TeX

D_9\times C_3\times C_9
% in TeX

G:=Group("D9xC3xC9");
// GroupNames label

G:=SmallGroup(486,91);
// by ID

G=gap.SmallGroup(486,91);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,68,8104,208,11669]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^9=c^9=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽