Extensions 1→N→G→Q→1 with N=C3xHe3:C2 and Q=C3

Direct product G=NxQ with N=C3xHe3:C2 and Q=C3
dρLabelID
C32xHe3:C281C3^2xHe3:C2486,230

Semidirect products G=N:Q with N=C3xHe3:C2 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3xHe3:C2):1C3 = C3xC3wrS3φ: C3/C1C3 ⊆ Out C3xHe3:C227(C3xHe3:C2):1C3486,115
(C3xHe3:C2):2C3 = C3xHe3.2C6φ: C3/C1C3 ⊆ Out C3xHe3:C281(C3xHe3:C2):2C3486,121
(C3xHe3:C2):3C3 = C3wrC3:C6φ: C3/C1C3 ⊆ Out C3xHe3:C2279(C3xHe3:C2):3C3486,126
(C3xHe3:C2):4C3 = He3.(C3xC6)φ: C3/C1C3 ⊆ Out C3xHe3:C2279(C3xHe3:C2):4C3486,130
(C3xHe3:C2):5C3 = 3+ 1+4:2C2φ: C3/C1C3 ⊆ Out C3xHe3:C2279(C3xHe3:C2):5C3486,237

Non-split extensions G=N.Q with N=C3xHe3:C2 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3xHe3:C2).1C3 = He3:C18φ: C3/C1C3 ⊆ Out C3xHe3:C281(C3xHe3:C2).1C3486,24
(C3xHe3:C2).2C3 = C3xHe3.C6φ: C3/C1C3 ⊆ Out C3xHe3:C281(C3xHe3:C2).2C3486,118
(C3xHe3:C2).3C3 = He3.C3:C6φ: C3/C1C3 ⊆ Out C3xHe3:C2279(C3xHe3:C2).3C3486,128
(C3xHe3:C2).4C3 = 3- 1+4:2C2φ: C3/C1C3 ⊆ Out C3xHe3:C2279(C3xHe3:C2).4C3486,239
(C3xHe3:C2).5C3 = C9xHe3:C2φ: trivial image81(C3xHe3:C2).5C3486,143
(C3xHe3:C2).6C3 = C3xHe3.4C6φ: trivial image81(C3xHe3:C2).6C3486,235

׿
x
:
Z
F
o
wr
Q
<