Copied to
clipboard

G = C3xC3wrS3order 486 = 2·35

Direct product of C3 and C3wrS3

direct product, non-abelian, supersoluble, monomial

Aliases: C3xC3wrS3, C34:2S3, C3wrC3:7C6, He3:(C3xC6), (C3xHe3):4C6, C33:7(C3xS3), He3:C2:1C32, C32.1(S3xC32), C32.49(C32:C6), (C3xC3wrC3):3C2, (C3xHe3:C2):1C3, C3.15(C3xC32:C6), SmallGroup(486,115)

Series: Derived Chief Lower central Upper central

C1C3He3 — C3xC3wrS3
C1C3C32He3C3xHe3C3xC3wrC3 — C3xC3wrS3
He3 — C3xC3wrS3
C1C32

Generators and relations for C3xC3wrS3
 G = < a,b,c,d,e | a3=b3=c3=d3=e6=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe-1=b-1c, cd=dc, ce=ec, ede-1=b-1d-1 >

Subgroups: 738 in 165 conjugacy classes, 24 normal (12 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, C3xS3, C3xC6, C3xC9, He3, He3, 3- 1+2, C33, C33, C33, He3:C2, S3xC32, C32xC6, C3wrC3, C3wrC3, C3xHe3, C3x3- 1+2, C34, C3wrS3, C3xHe3:C2, S3xC33, C3xC3wrC3, C3xC3wrS3
Quotients: C1, C2, C3, S3, C6, C32, C3xS3, C3xC6, C32:C6, S3xC32, C3wrS3, C3xC32:C6, C3xC3wrS3

Permutation representations of C3xC3wrS3
On 27 points - transitive group 27T177
Generators in S27
(1 7 6)(2 8 4)(3 9 5)(10 12 14)(11 13 15)(16 18 20)(17 19 21)(22 24 26)(23 25 27)
(1 5 8)(2 6 9)(3 4 7)(11 19 23)(13 21 25)(15 17 27)
(1 8 5)(2 9 6)(3 7 4)(10 18 22)(11 19 23)(12 20 24)(13 21 25)(14 16 26)(15 17 27)
(1 13 10)(2 19 16)(3 27 24)(4 17 20)(5 25 22)(6 11 14)(7 15 12)(8 21 18)(9 23 26)
(1 2 3)(4 5 6)(7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)

G:=sub<Sym(27)| (1,7,6)(2,8,4)(3,9,5)(10,12,14)(11,13,15)(16,18,20)(17,19,21)(22,24,26)(23,25,27), (1,5,8)(2,6,9)(3,4,7)(11,19,23)(13,21,25)(15,17,27), (1,8,5)(2,9,6)(3,7,4)(10,18,22)(11,19,23)(12,20,24)(13,21,25)(14,16,26)(15,17,27), (1,13,10)(2,19,16)(3,27,24)(4,17,20)(5,25,22)(6,11,14)(7,15,12)(8,21,18)(9,23,26), (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27)>;

G:=Group( (1,7,6)(2,8,4)(3,9,5)(10,12,14)(11,13,15)(16,18,20)(17,19,21)(22,24,26)(23,25,27), (1,5,8)(2,6,9)(3,4,7)(11,19,23)(13,21,25)(15,17,27), (1,8,5)(2,9,6)(3,7,4)(10,18,22)(11,19,23)(12,20,24)(13,21,25)(14,16,26)(15,17,27), (1,13,10)(2,19,16)(3,27,24)(4,17,20)(5,25,22)(6,11,14)(7,15,12)(8,21,18)(9,23,26), (1,2,3)(4,5,6)(7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27) );

G=PermutationGroup([[(1,7,6),(2,8,4),(3,9,5),(10,12,14),(11,13,15),(16,18,20),(17,19,21),(22,24,26),(23,25,27)], [(1,5,8),(2,6,9),(3,4,7),(11,19,23),(13,21,25),(15,17,27)], [(1,8,5),(2,9,6),(3,7,4),(10,18,22),(11,19,23),(12,20,24),(13,21,25),(14,16,26),(15,17,27)], [(1,13,10),(2,19,16),(3,27,24),(4,17,20),(5,25,22),(6,11,14),(7,15,12),(8,21,18),(9,23,26)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)]])

G:=TransitiveGroup(27,177);

66 conjugacy classes

class 1  2 3A···3H3I···3Z3AA3AB3AC3AD3AE3AF6A···6Z9A···9F
order123···33···33333336···69···9
size191···13···36661818189···918···18

66 irreducible representations

dim11111122366
type++++
imageC1C2C3C3C6C6S3C3xS3C3wrS3C32:C6C3xC32:C6
kernelC3xC3wrS3C3xC3wrC3C3wrS3C3xHe3:C2C3wrC3C3xHe3C34C33C3C32C3
# reps116262183612

Matrix representation of C3xC3wrS3 in GL5(F19)

70000
07000
00100
00010
00001
,
10000
01000
001100
00010
00007
,
10000
01000
00700
00070
00007
,
01000
1818000
000110
00001
00700
,
07000
70000
00700
00001
00010

G:=sub<GL(5,GF(19))| [7,0,0,0,0,0,7,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,1,0,0,0,0,0,7],[1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,7],[0,18,0,0,0,1,18,0,0,0,0,0,0,0,7,0,0,11,0,0,0,0,0,1,0],[0,7,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,1,0] >;

C3xC3wrS3 in GAP, Magma, Sage, TeX

C_3\times C_3\wr S_3
% in TeX

G:=Group("C3xC3wrS3");
// GroupNames label

G:=SmallGroup(486,115);
// by ID

G=gap.SmallGroup(486,115);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,867,873,8104,382]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^6=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e^-1=b^-1*c,c*d=d*c,c*e=e*c,e*d*e^-1=b^-1*d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<