Copied to
clipboard

G = He3⋊C18order 486 = 2·35

The semidirect product of He3 and C18 acting via C18/C3=C6

non-abelian, supersoluble, monomial

Aliases: He3⋊C18, C3.5C3≀S3, He3⋊C2⋊C9, He3⋊C91C2, (C32×C9)⋊1S3, (C3×He3).3C6, C32.1(S3×C9), C33.29(C3×S3), C3.6(C32⋊C18), C32.47(C32⋊C6), C3.5(He3.C6), C3.10(He3.2C6), (C3×He3⋊C2).1C3, SmallGroup(486,24)

Series: Derived Chief Lower central Upper central

C1C3He3 — He3⋊C18
C1C3C32He3C3×He3He3⋊C9 — He3⋊C18
He3 — He3⋊C18
C1C32

Generators and relations for He3⋊C18
 G = < a,b,c,d | a3=b3=c3=d18=1, ab=ba, cac-1=ab-1, dad-1=a-1b, bc=cb, bd=db, dcd-1=a-1c-1 >

Subgroups: 330 in 67 conjugacy classes, 15 normal (all characteristic)
C1, C2, C3, C3, S3, C6, C9, C32, C32, C18, C3×S3, C3×C6, C3×C9, He3, He3, C33, C33, S3×C9, He3⋊C2, C3×C18, S3×C32, C32⋊C9, C32×C9, C3×He3, S3×C3×C9, C3×He3⋊C2, He3⋊C9, He3⋊C18
Quotients: C1, C2, C3, S3, C6, C9, C18, C3×S3, S3×C9, C32⋊C6, C32⋊C18, C3≀S3, He3.C6, He3.2C6, He3⋊C18

Smallest permutation representation of He3⋊C18
On 81 points
Generators in S81
(1 15 27)(2 16 19)(3 17 20)(4 18 21)(5 10 22)(6 11 23)(7 12 24)(8 13 25)(9 14 26)(29 59 71)(31 61 73)(33 63 75)(35 47 77)(37 49 79)(39 51 81)(41 53 65)(43 55 67)(45 57 69)
(1 27 15)(2 19 16)(3 20 17)(4 21 18)(5 22 10)(6 23 11)(7 24 12)(8 25 13)(9 26 14)(28 58 70)(29 59 71)(30 60 72)(31 61 73)(32 62 74)(33 63 75)(34 46 76)(35 47 77)(36 48 78)(37 49 79)(38 50 80)(39 51 81)(40 52 64)(41 53 65)(42 54 66)(43 55 67)(44 56 68)(45 57 69)
(1 79 70)(2 29 38)(3 51 60)(4 73 64)(5 41 32)(6 63 54)(7 67 76)(8 35 44)(9 57 48)(10 65 74)(11 33 42)(12 55 46)(13 77 68)(14 45 36)(15 49 58)(16 71 80)(17 39 30)(18 61 52)(19 59 50)(20 81 72)(21 31 40)(22 53 62)(23 75 66)(24 43 34)(25 47 56)(26 69 78)(27 37 28)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)

G:=sub<Sym(81)| (1,15,27)(2,16,19)(3,17,20)(4,18,21)(5,10,22)(6,11,23)(7,12,24)(8,13,25)(9,14,26)(29,59,71)(31,61,73)(33,63,75)(35,47,77)(37,49,79)(39,51,81)(41,53,65)(43,55,67)(45,57,69), (1,27,15)(2,19,16)(3,20,17)(4,21,18)(5,22,10)(6,23,11)(7,24,12)(8,25,13)(9,26,14)(28,58,70)(29,59,71)(30,60,72)(31,61,73)(32,62,74)(33,63,75)(34,46,76)(35,47,77)(36,48,78)(37,49,79)(38,50,80)(39,51,81)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69), (1,79,70)(2,29,38)(3,51,60)(4,73,64)(5,41,32)(6,63,54)(7,67,76)(8,35,44)(9,57,48)(10,65,74)(11,33,42)(12,55,46)(13,77,68)(14,45,36)(15,49,58)(16,71,80)(17,39,30)(18,61,52)(19,59,50)(20,81,72)(21,31,40)(22,53,62)(23,75,66)(24,43,34)(25,47,56)(26,69,78)(27,37,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)>;

G:=Group( (1,15,27)(2,16,19)(3,17,20)(4,18,21)(5,10,22)(6,11,23)(7,12,24)(8,13,25)(9,14,26)(29,59,71)(31,61,73)(33,63,75)(35,47,77)(37,49,79)(39,51,81)(41,53,65)(43,55,67)(45,57,69), (1,27,15)(2,19,16)(3,20,17)(4,21,18)(5,22,10)(6,23,11)(7,24,12)(8,25,13)(9,26,14)(28,58,70)(29,59,71)(30,60,72)(31,61,73)(32,62,74)(33,63,75)(34,46,76)(35,47,77)(36,48,78)(37,49,79)(38,50,80)(39,51,81)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69), (1,79,70)(2,29,38)(3,51,60)(4,73,64)(5,41,32)(6,63,54)(7,67,76)(8,35,44)(9,57,48)(10,65,74)(11,33,42)(12,55,46)(13,77,68)(14,45,36)(15,49,58)(16,71,80)(17,39,30)(18,61,52)(19,59,50)(20,81,72)(21,31,40)(22,53,62)(23,75,66)(24,43,34)(25,47,56)(26,69,78)(27,37,28), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81) );

G=PermutationGroup([[(1,15,27),(2,16,19),(3,17,20),(4,18,21),(5,10,22),(6,11,23),(7,12,24),(8,13,25),(9,14,26),(29,59,71),(31,61,73),(33,63,75),(35,47,77),(37,49,79),(39,51,81),(41,53,65),(43,55,67),(45,57,69)], [(1,27,15),(2,19,16),(3,20,17),(4,21,18),(5,22,10),(6,23,11),(7,24,12),(8,25,13),(9,26,14),(28,58,70),(29,59,71),(30,60,72),(31,61,73),(32,62,74),(33,63,75),(34,46,76),(35,47,77),(36,48,78),(37,49,79),(38,50,80),(39,51,81),(40,52,64),(41,53,65),(42,54,66),(43,55,67),(44,56,68),(45,57,69)], [(1,79,70),(2,29,38),(3,51,60),(4,73,64),(5,41,32),(6,63,54),(7,67,76),(8,35,44),(9,57,48),(10,65,74),(11,33,42),(12,55,46),(13,77,68),(14,45,36),(15,49,58),(16,71,80),(17,39,30),(18,61,52),(19,59,50),(20,81,72),(21,31,40),(22,53,62),(23,75,66),(24,43,34),(25,47,56),(26,69,78),(27,37,28)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)]])

66 conjugacy classes

class 1  2 3A···3H3I3J3K3L3M3N6A···6H9A···9R9S···9X18A···18R
order123···33333336···69···99···918···18
size191···16661818189···93···318···189···9

66 irreducible representations

dim11111122233366
type++++
imageC1C2C3C6C9C18S3C3×S3S3×C9C3≀S3He3.C6He3.2C6C32⋊C6C32⋊C18
kernelHe3⋊C18He3⋊C9C3×He3⋊C2C3×He3He3⋊C2He3C32×C9C33C32C3C3C3C32C3
# reps11226612612121212

Matrix representation of He3⋊C18 in GL5(𝔽19)

10000
01000
001100
00010
00007
,
10000
01000
00700
00070
00007
,
181000
180000
00010
00001
00100
,
06000
60000
001100
00007
00070

G:=sub<GL(5,GF(19))| [1,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,1,0,0,0,0,0,7],[1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,7],[18,18,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[0,6,0,0,0,6,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,7,0] >;

He3⋊C18 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes C_{18}
% in TeX

G:=Group("He3:C18");
// GroupNames label

G:=SmallGroup(486,24);
// by ID

G=gap.SmallGroup(486,24);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,867,873,8104,382]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^18=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1*b,b*c=c*b,b*d=d*b,d*c*d^-1=a^-1*c^-1>;
// generators/relations

׿
×
𝔽