Extensions 1→N→G→Q→1 with N=C3 and Q=C6×He3

Direct product G=N×Q with N=C3 and Q=C6×He3
dρLabelID
C3×C6×He3162C3xC6xHe3486,251

Semidirect products G=N:Q with N=C3 and Q=C6×He3
extensionφ:Q→Aut NdρLabelID
C3⋊(C6×He3) = C3×S3×He3φ: C6×He3/C3×He3C2 ⊆ Aut C354C3:(C6xHe3)486,223

Non-split extensions G=N.Q with N=C3 and Q=C6×He3
extensionφ:Q→Aut NdρLabelID
C3.1(C6×He3) = C6×C32⋊C9central extension (φ=1)162C3.1(C6xHe3)486,191
C3.2(C6×He3) = C18×He3central extension (φ=1)162C3.2(C6xHe3)486,194
C3.3(C6×He3) = C2×C32⋊He3central stem extension (φ=1)54C3.3(C6xHe3)486,196
C3.4(C6×He3) = C2×C34.C3central stem extension (φ=1)54C3.4(C6xHe3)486,197
C3.5(C6×He3) = C2×C9⋊He3central stem extension (φ=1)162C3.5(C6xHe3)486,198
C3.6(C6×He3) = C2×C32.23C33central stem extension (φ=1)162C3.6(C6xHe3)486,199
C3.7(C6×He3) = C6×C3≀C3central stem extension (φ=1)54C3.7(C6xHe3)486,210
C3.8(C6×He3) = C6×He3.C3central stem extension (φ=1)162C3.8(C6xHe3)486,211
C3.9(C6×He3) = C6×He3⋊C3central stem extension (φ=1)162C3.9(C6xHe3)486,212
C3.10(C6×He3) = C6×C3.He3central stem extension (φ=1)162C3.10(C6xHe3)486,213
C3.11(C6×He3) = C2×C9.He3central stem extension (φ=1)543C3.11(C6xHe3)486,214
C3.12(C6×He3) = C2×C33⋊C32central stem extension (φ=1)549C3.12(C6xHe3)486,215
C3.13(C6×He3) = C2×He3.C32central stem extension (φ=1)549C3.13(C6xHe3)486,216
C3.14(C6×He3) = C2×He3⋊C32central stem extension (φ=1)549C3.14(C6xHe3)486,217
C3.15(C6×He3) = C2×C32.C33central stem extension (φ=1)549C3.15(C6xHe3)486,218
C3.16(C6×He3) = C2×C9.2He3central stem extension (φ=1)549C3.16(C6xHe3)486,219

׿
×
𝔽