extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1(C3×C9) = C2×He3⋊C9 | φ: C3×C9/C9 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).1(C3xC9) | 486,77 |
(C3×C6).2(C3×C9) = C2×3- 1+2⋊C9 | φ: C3×C9/C9 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).2(C3xC9) | 486,78 |
(C3×C6).3(C3×C9) = C2×C9.5He3 | φ: C3×C9/C9 → C3 ⊆ Aut C3×C6 | 162 | 3 | (C3xC6).3(C3xC9) | 486,79 |
(C3×C6).4(C3×C9) = C2×C9.6He3 | φ: C3×C9/C9 → C3 ⊆ Aut C3×C6 | 162 | 3 | (C3xC6).4(C3xC9) | 486,80 |
(C3×C6).5(C3×C9) = C18×3- 1+2 | φ: C3×C9/C9 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).5(C3xC9) | 486,195 |
(C3×C6).6(C3×C9) = C2×C27○He3 | φ: C3×C9/C9 → C3 ⊆ Aut C3×C6 | 162 | 3 | (C3xC6).6(C3xC9) | 486,209 |
(C3×C6).7(C3×C9) = C2×C33⋊C9 | φ: C3×C9/C32 → C3 ⊆ Aut C3×C6 | 54 | | (C3xC6).7(C3xC9) | 486,73 |
(C3×C6).8(C3×C9) = C2×C32.19He3 | φ: C3×C9/C32 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).8(C3xC9) | 486,74 |
(C3×C6).9(C3×C9) = C2×C32.20He3 | φ: C3×C9/C32 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).9(C3xC9) | 486,75 |
(C3×C6).10(C3×C9) = C2×C9.4He3 | φ: C3×C9/C32 → C3 ⊆ Aut C3×C6 | 54 | 3 | (C3xC6).10(C3xC9) | 486,76 |
(C3×C6).11(C3×C9) = C2×C92⋊3C3 | φ: C3×C9/C32 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).11(C3xC9) | 486,193 |
(C3×C6).12(C3×C9) = C6×C27⋊C3 | φ: C3×C9/C32 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).12(C3xC9) | 486,208 |
(C3×C6).13(C3×C9) = C2×C3.C92 | central extension (φ=1) | 486 | | (C3xC6).13(C3xC9) | 486,62 |
(C3×C6).14(C3×C9) = C2×C27⋊2C9 | central extension (φ=1) | 486 | | (C3xC6).14(C3xC9) | 486,71 |
(C3×C6).15(C3×C9) = C2×C32⋊C27 | central extension (φ=1) | 162 | | (C3xC6).15(C3xC9) | 486,72 |
(C3×C6).16(C3×C9) = C2×C9⋊C27 | central extension (φ=1) | 486 | | (C3xC6).16(C3xC9) | 486,81 |
(C3×C6).17(C3×C9) = C6×C9⋊C9 | central extension (φ=1) | 486 | | (C3xC6).17(C3xC9) | 486,192 |