Extensions 1→N→G→Q→1 with N=C3×C6 and Q=C3×C9

Direct product G=N×Q with N=C3×C6 and Q=C3×C9
dρLabelID
C33×C18486C3^3xC18486,250

Semidirect products G=N:Q with N=C3×C6 and Q=C3×C9
extensionφ:Q→Aut NdρLabelID
(C3×C6)⋊1(C3×C9) = C18×He3φ: C3×C9/C9C3 ⊆ Aut C3×C6162(C3xC6):1(C3xC9)486,194
(C3×C6)⋊2(C3×C9) = C6×C32⋊C9φ: C3×C9/C32C3 ⊆ Aut C3×C6162(C3xC6):2(C3xC9)486,191

Non-split extensions G=N.Q with N=C3×C6 and Q=C3×C9
extensionφ:Q→Aut NdρLabelID
(C3×C6).1(C3×C9) = C2×He3⋊C9φ: C3×C9/C9C3 ⊆ Aut C3×C6162(C3xC6).1(C3xC9)486,77
(C3×C6).2(C3×C9) = C2×3- 1+2⋊C9φ: C3×C9/C9C3 ⊆ Aut C3×C6162(C3xC6).2(C3xC9)486,78
(C3×C6).3(C3×C9) = C2×C9.5He3φ: C3×C9/C9C3 ⊆ Aut C3×C61623(C3xC6).3(C3xC9)486,79
(C3×C6).4(C3×C9) = C2×C9.6He3φ: C3×C9/C9C3 ⊆ Aut C3×C61623(C3xC6).4(C3xC9)486,80
(C3×C6).5(C3×C9) = C18×3- 1+2φ: C3×C9/C9C3 ⊆ Aut C3×C6162(C3xC6).5(C3xC9)486,195
(C3×C6).6(C3×C9) = C2×C27○He3φ: C3×C9/C9C3 ⊆ Aut C3×C61623(C3xC6).6(C3xC9)486,209
(C3×C6).7(C3×C9) = C2×C33⋊C9φ: C3×C9/C32C3 ⊆ Aut C3×C654(C3xC6).7(C3xC9)486,73
(C3×C6).8(C3×C9) = C2×C32.19He3φ: C3×C9/C32C3 ⊆ Aut C3×C6162(C3xC6).8(C3xC9)486,74
(C3×C6).9(C3×C9) = C2×C32.20He3φ: C3×C9/C32C3 ⊆ Aut C3×C6162(C3xC6).9(C3xC9)486,75
(C3×C6).10(C3×C9) = C2×C9.4He3φ: C3×C9/C32C3 ⊆ Aut C3×C6543(C3xC6).10(C3xC9)486,76
(C3×C6).11(C3×C9) = C2×C923C3φ: C3×C9/C32C3 ⊆ Aut C3×C6162(C3xC6).11(C3xC9)486,193
(C3×C6).12(C3×C9) = C6×C27⋊C3φ: C3×C9/C32C3 ⊆ Aut C3×C6162(C3xC6).12(C3xC9)486,208
(C3×C6).13(C3×C9) = C2×C3.C92central extension (φ=1)486(C3xC6).13(C3xC9)486,62
(C3×C6).14(C3×C9) = C2×C272C9central extension (φ=1)486(C3xC6).14(C3xC9)486,71
(C3×C6).15(C3×C9) = C2×C32⋊C27central extension (φ=1)162(C3xC6).15(C3xC9)486,72
(C3×C6).16(C3×C9) = C2×C9⋊C27central extension (φ=1)486(C3xC6).16(C3xC9)486,81
(C3×C6).17(C3×C9) = C6×C9⋊C9central extension (φ=1)486(C3xC6).17(C3xC9)486,192

׿
×
𝔽