direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D246, C2×D123, C82⋊S3, C6⋊D41, C3⋊2D82, C41⋊2D6, C246⋊1C2, C123⋊2C22, sometimes denoted D492 or Dih246 or Dih492, SmallGroup(492,11)
Series: Derived ►Chief ►Lower central ►Upper central
C123 — D246 |
Generators and relations for D246
G = < a,b | a246=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246)
(1 246)(2 245)(3 244)(4 243)(5 242)(6 241)(7 240)(8 239)(9 238)(10 237)(11 236)(12 235)(13 234)(14 233)(15 232)(16 231)(17 230)(18 229)(19 228)(20 227)(21 226)(22 225)(23 224)(24 223)(25 222)(26 221)(27 220)(28 219)(29 218)(30 217)(31 216)(32 215)(33 214)(34 213)(35 212)(36 211)(37 210)(38 209)(39 208)(40 207)(41 206)(42 205)(43 204)(44 203)(45 202)(46 201)(47 200)(48 199)(49 198)(50 197)(51 196)(52 195)(53 194)(54 193)(55 192)(56 191)(57 190)(58 189)(59 188)(60 187)(61 186)(62 185)(63 184)(64 183)(65 182)(66 181)(67 180)(68 179)(69 178)(70 177)(71 176)(72 175)(73 174)(74 173)(75 172)(76 171)(77 170)(78 169)(79 168)(80 167)(81 166)(82 165)(83 164)(84 163)(85 162)(86 161)(87 160)(88 159)(89 158)(90 157)(91 156)(92 155)(93 154)(94 153)(95 152)(96 151)(97 150)(98 149)(99 148)(100 147)(101 146)(102 145)(103 144)(104 143)(105 142)(106 141)(107 140)(108 139)(109 138)(110 137)(111 136)(112 135)(113 134)(114 133)(115 132)(116 131)(117 130)(118 129)(119 128)(120 127)(121 126)(122 125)(123 124)
G:=sub<Sym(246)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246), (1,246)(2,245)(3,244)(4,243)(5,242)(6,241)(7,240)(8,239)(9,238)(10,237)(11,236)(12,235)(13,234)(14,233)(15,232)(16,231)(17,230)(18,229)(19,228)(20,227)(21,226)(22,225)(23,224)(24,223)(25,222)(26,221)(27,220)(28,219)(29,218)(30,217)(31,216)(32,215)(33,214)(34,213)(35,212)(36,211)(37,210)(38,209)(39,208)(40,207)(41,206)(42,205)(43,204)(44,203)(45,202)(46,201)(47,200)(48,199)(49,198)(50,197)(51,196)(52,195)(53,194)(54,193)(55,192)(56,191)(57,190)(58,189)(59,188)(60,187)(61,186)(62,185)(63,184)(64,183)(65,182)(66,181)(67,180)(68,179)(69,178)(70,177)(71,176)(72,175)(73,174)(74,173)(75,172)(76,171)(77,170)(78,169)(79,168)(80,167)(81,166)(82,165)(83,164)(84,163)(85,162)(86,161)(87,160)(88,159)(89,158)(90,157)(91,156)(92,155)(93,154)(94,153)(95,152)(96,151)(97,150)(98,149)(99,148)(100,147)(101,146)(102,145)(103,144)(104,143)(105,142)(106,141)(107,140)(108,139)(109,138)(110,137)(111,136)(112,135)(113,134)(114,133)(115,132)(116,131)(117,130)(118,129)(119,128)(120,127)(121,126)(122,125)(123,124)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246), (1,246)(2,245)(3,244)(4,243)(5,242)(6,241)(7,240)(8,239)(9,238)(10,237)(11,236)(12,235)(13,234)(14,233)(15,232)(16,231)(17,230)(18,229)(19,228)(20,227)(21,226)(22,225)(23,224)(24,223)(25,222)(26,221)(27,220)(28,219)(29,218)(30,217)(31,216)(32,215)(33,214)(34,213)(35,212)(36,211)(37,210)(38,209)(39,208)(40,207)(41,206)(42,205)(43,204)(44,203)(45,202)(46,201)(47,200)(48,199)(49,198)(50,197)(51,196)(52,195)(53,194)(54,193)(55,192)(56,191)(57,190)(58,189)(59,188)(60,187)(61,186)(62,185)(63,184)(64,183)(65,182)(66,181)(67,180)(68,179)(69,178)(70,177)(71,176)(72,175)(73,174)(74,173)(75,172)(76,171)(77,170)(78,169)(79,168)(80,167)(81,166)(82,165)(83,164)(84,163)(85,162)(86,161)(87,160)(88,159)(89,158)(90,157)(91,156)(92,155)(93,154)(94,153)(95,152)(96,151)(97,150)(98,149)(99,148)(100,147)(101,146)(102,145)(103,144)(104,143)(105,142)(106,141)(107,140)(108,139)(109,138)(110,137)(111,136)(112,135)(113,134)(114,133)(115,132)(116,131)(117,130)(118,129)(119,128)(120,127)(121,126)(122,125)(123,124) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246)], [(1,246),(2,245),(3,244),(4,243),(5,242),(6,241),(7,240),(8,239),(9,238),(10,237),(11,236),(12,235),(13,234),(14,233),(15,232),(16,231),(17,230),(18,229),(19,228),(20,227),(21,226),(22,225),(23,224),(24,223),(25,222),(26,221),(27,220),(28,219),(29,218),(30,217),(31,216),(32,215),(33,214),(34,213),(35,212),(36,211),(37,210),(38,209),(39,208),(40,207),(41,206),(42,205),(43,204),(44,203),(45,202),(46,201),(47,200),(48,199),(49,198),(50,197),(51,196),(52,195),(53,194),(54,193),(55,192),(56,191),(57,190),(58,189),(59,188),(60,187),(61,186),(62,185),(63,184),(64,183),(65,182),(66,181),(67,180),(68,179),(69,178),(70,177),(71,176),(72,175),(73,174),(74,173),(75,172),(76,171),(77,170),(78,169),(79,168),(80,167),(81,166),(82,165),(83,164),(84,163),(85,162),(86,161),(87,160),(88,159),(89,158),(90,157),(91,156),(92,155),(93,154),(94,153),(95,152),(96,151),(97,150),(98,149),(99,148),(100,147),(101,146),(102,145),(103,144),(104,143),(105,142),(106,141),(107,140),(108,139),(109,138),(110,137),(111,136),(112,135),(113,134),(114,133),(115,132),(116,131),(117,130),(118,129),(119,128),(120,127),(121,126),(122,125),(123,124)]])
126 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 6 | 41A | ··· | 41T | 82A | ··· | 82T | 123A | ··· | 123AN | 246A | ··· | 246AN |
order | 1 | 2 | 2 | 2 | 3 | 6 | 41 | ··· | 41 | 82 | ··· | 82 | 123 | ··· | 123 | 246 | ··· | 246 |
size | 1 | 1 | 123 | 123 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
126 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D6 | D41 | D82 | D123 | D246 |
kernel | D246 | D123 | C246 | C82 | C41 | C6 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 20 | 20 | 40 | 40 |
Matrix representation of D246 ►in GL3(𝔽739) generated by
738 | 0 | 0 |
0 | 221 | 731 |
0 | 8 | 90 |
1 | 0 | 0 |
0 | 221 | 731 |
0 | 193 | 518 |
G:=sub<GL(3,GF(739))| [738,0,0,0,221,8,0,731,90],[1,0,0,0,221,193,0,731,518] >;
D246 in GAP, Magma, Sage, TeX
D_{246}
% in TeX
G:=Group("D246");
// GroupNames label
G:=SmallGroup(492,11);
// by ID
G=gap.SmallGroup(492,11);
# by ID
G:=PCGroup([4,-2,-2,-3,-41,98,7683]);
// Polycyclic
G:=Group<a,b|a^246=b^2=1,b*a*b=a^-1>;
// generators/relations
Export