Copied to
clipboard

G = C23×C12order 96 = 25·3

Abelian group of type [2,2,2,12]

direct product, abelian, monomial, 2-elementary

Aliases: C23×C12, SmallGroup(96,220)

Series: Derived Chief Lower central Upper central

C1 — C23×C12
C1C2C6C12C2×C12C22×C12 — C23×C12
C1 — C23×C12
C1 — C23×C12

Generators and relations for C23×C12
 G = < a,b,c,d | a2=b2=c2=d12=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, cd=dc >

Subgroups: 236, all normal (8 characteristic)
C1, C2, C2 [×14], C3, C4 [×8], C22 [×35], C6, C6 [×14], C2×C4 [×28], C23 [×15], C12 [×8], C2×C6 [×35], C22×C4 [×14], C24, C2×C12 [×28], C22×C6 [×15], C23×C4, C22×C12 [×14], C23×C6, C23×C12
Quotients: C1, C2 [×15], C3, C4 [×8], C22 [×35], C6 [×15], C2×C4 [×28], C23 [×15], C12 [×8], C2×C6 [×35], C22×C4 [×14], C24, C2×C12 [×28], C22×C6 [×15], C23×C4, C22×C12 [×14], C23×C6, C23×C12

Smallest permutation representation of C23×C12
Regular action on 96 points
Generators in S96
(1 61)(2 62)(3 63)(4 64)(5 65)(6 66)(7 67)(8 68)(9 69)(10 70)(11 71)(12 72)(13 78)(14 79)(15 80)(16 81)(17 82)(18 83)(19 84)(20 73)(21 74)(22 75)(23 76)(24 77)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)(31 57)(32 58)(33 59)(34 60)(35 49)(36 50)(37 87)(38 88)(39 89)(40 90)(41 91)(42 92)(43 93)(44 94)(45 95)(46 96)(47 85)(48 86)
(1 21)(2 22)(3 23)(4 24)(5 13)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)(25 86)(26 87)(27 88)(28 89)(29 90)(30 91)(31 92)(32 93)(33 94)(34 95)(35 96)(36 85)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)(46 49)(47 50)(48 51)(61 74)(62 75)(63 76)(64 77)(65 78)(66 79)(67 80)(68 81)(69 82)(70 83)(71 84)(72 73)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 25)(10 26)(11 27)(12 28)(13 94)(14 95)(15 96)(16 85)(17 86)(18 87)(19 88)(20 89)(21 90)(22 91)(23 92)(24 93)(37 83)(38 84)(39 73)(40 74)(41 75)(42 76)(43 77)(44 78)(45 79)(46 80)(47 81)(48 82)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 61)(56 62)(57 63)(58 64)(59 65)(60 66)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,78)(14,79)(15,80)(16,81)(17,82)(18,83)(19,84)(20,73)(21,74)(22,75)(23,76)(24,77)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,49)(36,50)(37,87)(38,88)(39,89)(40,90)(41,91)(42,92)(43,93)(44,94)(45,95)(46,96)(47,85)(48,86), (1,21)(2,22)(3,23)(4,24)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20)(25,86)(26,87)(27,88)(28,89)(29,90)(30,91)(31,92)(32,93)(33,94)(34,95)(35,96)(36,85)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,49)(47,50)(48,51)(61,74)(62,75)(63,76)(64,77)(65,78)(66,79)(67,80)(68,81)(69,82)(70,83)(71,84)(72,73), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,94)(14,95)(15,96)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(37,83)(38,84)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,81)(48,82)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)>;

G:=Group( (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,78)(14,79)(15,80)(16,81)(17,82)(18,83)(19,84)(20,73)(21,74)(22,75)(23,76)(24,77)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,49)(36,50)(37,87)(38,88)(39,89)(40,90)(41,91)(42,92)(43,93)(44,94)(45,95)(46,96)(47,85)(48,86), (1,21)(2,22)(3,23)(4,24)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20)(25,86)(26,87)(27,88)(28,89)(29,90)(30,91)(31,92)(32,93)(33,94)(34,95)(35,96)(36,85)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,49)(47,50)(48,51)(61,74)(62,75)(63,76)(64,77)(65,78)(66,79)(67,80)(68,81)(69,82)(70,83)(71,84)(72,73), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,94)(14,95)(15,96)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,91)(23,92)(24,93)(37,83)(38,84)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,81)(48,82)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,61)(56,62)(57,63)(58,64)(59,65)(60,66), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96) );

G=PermutationGroup([(1,61),(2,62),(3,63),(4,64),(5,65),(6,66),(7,67),(8,68),(9,69),(10,70),(11,71),(12,72),(13,78),(14,79),(15,80),(16,81),(17,82),(18,83),(19,84),(20,73),(21,74),(22,75),(23,76),(24,77),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56),(31,57),(32,58),(33,59),(34,60),(35,49),(36,50),(37,87),(38,88),(39,89),(40,90),(41,91),(42,92),(43,93),(44,94),(45,95),(46,96),(47,85),(48,86)], [(1,21),(2,22),(3,23),(4,24),(5,13),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20),(25,86),(26,87),(27,88),(28,89),(29,90),(30,91),(31,92),(32,93),(33,94),(34,95),(35,96),(36,85),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60),(46,49),(47,50),(48,51),(61,74),(62,75),(63,76),(64,77),(65,78),(66,79),(67,80),(68,81),(69,82),(70,83),(71,84),(72,73)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,25),(10,26),(11,27),(12,28),(13,94),(14,95),(15,96),(16,85),(17,86),(18,87),(19,88),(20,89),(21,90),(22,91),(23,92),(24,93),(37,83),(38,84),(39,73),(40,74),(41,75),(42,76),(43,77),(44,78),(45,79),(46,80),(47,81),(48,82),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,61),(56,62),(57,63),(58,64),(59,65),(60,66)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)])

C23×C12 is a maximal subgroup of   C24.6Dic3  C24.73D6  C24.74D6  C24.75D6  C24.76D6  C24.83D6

96 conjugacy classes

class 1 2A···2O3A3B4A···4P6A···6AD12A···12AF
order12···2334···46···612···12
size11···1111···11···11···1

96 irreducible representations

dim11111111
type+++
imageC1C2C2C3C4C6C6C12
kernelC23×C12C22×C12C23×C6C23×C4C22×C6C22×C4C24C23
# reps114121628232

Matrix representation of C23×C12 in GL4(𝔽13) generated by

1000
01200
0010
0001
,
12000
0100
0010
00012
,
12000
0100
00120
00012
,
6000
0700
00100
0003
G:=sub<GL(4,GF(13))| [1,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,1,0,0,0,0,1,0,0,0,0,12],[12,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[6,0,0,0,0,7,0,0,0,0,10,0,0,0,0,3] >;

C23×C12 in GAP, Magma, Sage, TeX

C_2^3\times C_{12}
% in TeX

G:=Group("C2^3xC12");
// GroupNames label

G:=SmallGroup(96,220);
// by ID

G=gap.SmallGroup(96,220);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-2,288]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^2=d^12=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations

׿
×
𝔽