direct product, metacyclic, supersoluble, monomial, A-group
Aliases: S3×C18, C6⋊C18, C3⋊(C2×C18), (S3×C6).C3, (C3×S3).C6, (C3×C18)⋊1C2, C6.9(C3×S3), C3.4(S3×C6), (C3×C6).6C6, (C3×C9)⋊2C22, C32.2(C2×C6), SmallGroup(108,24)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C18 |
Generators and relations for S3×C18
G = < a,b,c | a18=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 31 25)(20 32 26)(21 33 27)(22 34 28)(23 35 29)(24 36 30)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 25)(17 26)(18 27)
G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,31,25),(20,32,26),(21,33,27),(22,34,28),(23,35,29),(24,36,30)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,25),(17,26),(18,27)]])
S3×C18 is a maximal subgroup of
D6⋊D9 C9⋊D12
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 9A | ··· | 9F | 9G | ··· | 9L | 18A | ··· | 18F | 18G | ··· | 18L | 18M | ··· | 18X |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 3 | 3 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | C9 | C18 | C18 | S3 | D6 | C3×S3 | S3×C6 | S3×C9 | S3×C18 |
kernel | S3×C18 | S3×C9 | C3×C18 | S3×C6 | C3×S3 | C3×C6 | D6 | S3 | C6 | C18 | C9 | C6 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 6 | 12 | 6 | 1 | 1 | 2 | 2 | 6 | 6 |
Matrix representation of S3×C18 ►in GL2(𝔽19) generated by
13 | 0 |
0 | 13 |
7 | 0 |
0 | 11 |
0 | 12 |
8 | 0 |
G:=sub<GL(2,GF(19))| [13,0,0,13],[7,0,0,11],[0,8,12,0] >;
S3×C18 in GAP, Magma, Sage, TeX
S_3\times C_{18}
% in TeX
G:=Group("S3xC18");
// GroupNames label
G:=SmallGroup(108,24);
// by ID
G=gap.SmallGroup(108,24);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-3,57,1804]);
// Polycyclic
G:=Group<a,b,c|a^18=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export