Copied to
clipboard

G = S3×C18order 108 = 22·33

Direct product of C18 and S3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: S3×C18, C6⋊C18, C3⋊(C2×C18), (S3×C6).C3, (C3×S3).C6, (C3×C18)⋊1C2, C6.9(C3×S3), C3.4(S3×C6), (C3×C6).6C6, (C3×C9)⋊2C22, C32.2(C2×C6), SmallGroup(108,24)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C18
C1C3C32C3×C9S3×C9 — S3×C18
C3 — S3×C18
C1C18

Generators and relations for S3×C18
 G = < a,b,c | a18=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C2
2C3
3C22
2C6
3C6
3C6
2C9
3C2×C6
2C18
3C18
3C18
3C2×C18

Smallest permutation representation of S3×C18
On 36 points
Generators in S36
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 31 25)(20 32 26)(21 33 27)(22 34 28)(23 35 29)(24 36 30)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 25)(17 26)(18 27)

G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,31,25),(20,32,26),(21,33,27),(22,34,28),(23,35,29),(24,36,30)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,25),(17,26),(18,27)]])

S3×C18 is a maximal subgroup of   D6⋊D9  C9⋊D12

54 conjugacy classes

class 1 2A2B2C3A3B3C3D3E6A6B6C6D6E6F6G6H6I9A···9F9G···9L18A···18F18G···18L18M···18X
order1222333336666666669···99···918···1818···1818···18
size1133112221122233331···12···21···12···23···3

54 irreducible representations

dim111111111222222
type+++++
imageC1C2C2C3C6C6C9C18C18S3D6C3×S3S3×C6S3×C9S3×C18
kernelS3×C18S3×C9C3×C18S3×C6C3×S3C3×C6D6S3C6C18C9C6C3C2C1
# reps1212426126112266

Matrix representation of S3×C18 in GL2(𝔽19) generated by

130
013
,
70
011
,
012
80
G:=sub<GL(2,GF(19))| [13,0,0,13],[7,0,0,11],[0,8,12,0] >;

S3×C18 in GAP, Magma, Sage, TeX

S_3\times C_{18}
% in TeX

G:=Group("S3xC18");
// GroupNames label

G:=SmallGroup(108,24);
// by ID

G=gap.SmallGroup(108,24);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-3,57,1804]);
// Polycyclic

G:=Group<a,b,c|a^18=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C18 in TeX

׿
×
𝔽