Copied to
clipboard

G = C19⋊D4order 152 = 23·19

The semidirect product of C19 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C192D4, C22⋊D19, D382C2, Dic19⋊C2, C2.5D38, C38.5C22, (C2×C38)⋊2C2, SmallGroup(152,7)

Series: Derived Chief Lower central Upper central

C1C38 — C19⋊D4
C1C19C38D38 — C19⋊D4
C19C38 — C19⋊D4
C1C2C22

Generators and relations for C19⋊D4
 G = < a,b,c | a19=b4=c2=1, bab-1=cac=a-1, cbc=b-1 >

2C2
38C2
19C4
19C22
2D19
2C38
19D4

Smallest permutation representation of C19⋊D4
On 76 points
Generators in S76
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)
(1 55 21 75)(2 54 22 74)(3 53 23 73)(4 52 24 72)(5 51 25 71)(6 50 26 70)(7 49 27 69)(8 48 28 68)(9 47 29 67)(10 46 30 66)(11 45 31 65)(12 44 32 64)(13 43 33 63)(14 42 34 62)(15 41 35 61)(16 40 36 60)(17 39 37 59)(18 57 38 58)(19 56 20 76)
(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(20 22)(23 38)(24 37)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(39 72)(40 71)(41 70)(42 69)(43 68)(44 67)(45 66)(46 65)(47 64)(48 63)(49 62)(50 61)(51 60)(52 59)(53 58)(54 76)(55 75)(56 74)(57 73)

G:=sub<Sym(76)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,55,21,75)(2,54,22,74)(3,53,23,73)(4,52,24,72)(5,51,25,71)(6,50,26,70)(7,49,27,69)(8,48,28,68)(9,47,29,67)(10,46,30,66)(11,45,31,65)(12,44,32,64)(13,43,33,63)(14,42,34,62)(15,41,35,61)(16,40,36,60)(17,39,37,59)(18,57,38,58)(19,56,20,76), (2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(20,22)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(39,72)(40,71)(41,70)(42,69)(43,68)(44,67)(45,66)(46,65)(47,64)(48,63)(49,62)(50,61)(51,60)(52,59)(53,58)(54,76)(55,75)(56,74)(57,73)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,55,21,75)(2,54,22,74)(3,53,23,73)(4,52,24,72)(5,51,25,71)(6,50,26,70)(7,49,27,69)(8,48,28,68)(9,47,29,67)(10,46,30,66)(11,45,31,65)(12,44,32,64)(13,43,33,63)(14,42,34,62)(15,41,35,61)(16,40,36,60)(17,39,37,59)(18,57,38,58)(19,56,20,76), (2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(20,22)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(39,72)(40,71)(41,70)(42,69)(43,68)(44,67)(45,66)(46,65)(47,64)(48,63)(49,62)(50,61)(51,60)(52,59)(53,58)(54,76)(55,75)(56,74)(57,73) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)], [(1,55,21,75),(2,54,22,74),(3,53,23,73),(4,52,24,72),(5,51,25,71),(6,50,26,70),(7,49,27,69),(8,48,28,68),(9,47,29,67),(10,46,30,66),(11,45,31,65),(12,44,32,64),(13,43,33,63),(14,42,34,62),(15,41,35,61),(16,40,36,60),(17,39,37,59),(18,57,38,58),(19,56,20,76)], [(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(20,22),(23,38),(24,37),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(39,72),(40,71),(41,70),(42,69),(43,68),(44,67),(45,66),(46,65),(47,64),(48,63),(49,62),(50,61),(51,60),(52,59),(53,58),(54,76),(55,75),(56,74),(57,73)]])

C19⋊D4 is a maximal subgroup of
D765C2  D4×D19  D42D19  D38⋊C6  C57⋊D4  C19⋊D12  C577D4  C19⋊S4
C19⋊D4 is a maximal quotient of
Dic19⋊C4  D38⋊C4  D4⋊D19  D4.D19  Q8⋊D19  C19⋊Q16  C23.D19  C57⋊D4  C19⋊D12  C577D4

41 conjugacy classes

class 1 2A2B2C 4 19A···19I38A···38AA
order1222419···1938···38
size11238382···22···2

41 irreducible representations

dim11112222
type+++++++
imageC1C2C2C2D4D19D38C19⋊D4
kernelC19⋊D4Dic19D38C2×C38C19C22C2C1
# reps111119918

Matrix representation of C19⋊D4 in GL2(𝔽229) generated by

01
22818
,
3972
87190
,
10
18228
G:=sub<GL(2,GF(229))| [0,228,1,18],[39,87,72,190],[1,18,0,228] >;

C19⋊D4 in GAP, Magma, Sage, TeX

C_{19}\rtimes D_4
% in TeX

G:=Group("C19:D4");
// GroupNames label

G:=SmallGroup(152,7);
// by ID

G=gap.SmallGroup(152,7);
# by ID

G:=PCGroup([4,-2,-2,-2,-19,49,2307]);
// Polycyclic

G:=Group<a,b,c|a^19=b^4=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C19⋊D4 in TeX

׿
×
𝔽