Copied to
clipboard

G = C20:3C8order 160 = 25·5

1st semidirect product of C20 and C8 acting via C8/C4=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C20:3C8, C20.7Q8, C20.32D4, C4.16D20, C42.2D5, C4.7Dic10, C10.10M4(2), C5:3(C4:C8), C4:(C5:2C8), (C4xC20).4C2, C10.8(C4:C4), C10.16(C2xC8), (C2xC20).18C4, (C2xC4).89D10, (C2xC4).3Dic5, C2.1(C4:Dic5), C2.2(C4.Dic5), C22.8(C2xDic5), (C2xC20).103C22, C2.3(C2xC5:2C8), (C2xC5:2C8).8C2, (C2xC10).46(C2xC4), SmallGroup(160,11)

Series: Derived Chief Lower central Upper central

C1C10 — C20:3C8
C1C5C10C20C2xC20C2xC5:2C8 — C20:3C8
C5C10 — C20:3C8
C1C2xC4C42

Generators and relations for C20:3C8
 G = < a,b | a20=b8=1, bab-1=a-1 >

Subgroups: 72 in 38 conjugacy classes, 29 normal (23 characteristic)
Quotients: C1, C2, C4, C22, C8, C2xC4, D4, Q8, D5, C4:C4, C2xC8, M4(2), Dic5, D10, C4:C8, C5:2C8, Dic10, D20, C2xDic5, C2xC5:2C8, C4.Dic5, C4:Dic5, C20:3C8
2C4
10C8
10C8
2C20
5C2xC8
5C2xC8
2C5:2C8
2C5:2C8
5C4:C8

Smallest permutation representation of C20:3C8
Regular action on 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 22 136 151 81 63 117 42)(2 21 137 150 82 62 118 41)(3 40 138 149 83 61 119 60)(4 39 139 148 84 80 120 59)(5 38 140 147 85 79 101 58)(6 37 121 146 86 78 102 57)(7 36 122 145 87 77 103 56)(8 35 123 144 88 76 104 55)(9 34 124 143 89 75 105 54)(10 33 125 142 90 74 106 53)(11 32 126 141 91 73 107 52)(12 31 127 160 92 72 108 51)(13 30 128 159 93 71 109 50)(14 29 129 158 94 70 110 49)(15 28 130 157 95 69 111 48)(16 27 131 156 96 68 112 47)(17 26 132 155 97 67 113 46)(18 25 133 154 98 66 114 45)(19 24 134 153 99 65 115 44)(20 23 135 152 100 64 116 43)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,22,136,151,81,63,117,42)(2,21,137,150,82,62,118,41)(3,40,138,149,83,61,119,60)(4,39,139,148,84,80,120,59)(5,38,140,147,85,79,101,58)(6,37,121,146,86,78,102,57)(7,36,122,145,87,77,103,56)(8,35,123,144,88,76,104,55)(9,34,124,143,89,75,105,54)(10,33,125,142,90,74,106,53)(11,32,126,141,91,73,107,52)(12,31,127,160,92,72,108,51)(13,30,128,159,93,71,109,50)(14,29,129,158,94,70,110,49)(15,28,130,157,95,69,111,48)(16,27,131,156,96,68,112,47)(17,26,132,155,97,67,113,46)(18,25,133,154,98,66,114,45)(19,24,134,153,99,65,115,44)(20,23,135,152,100,64,116,43)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,22,136,151,81,63,117,42)(2,21,137,150,82,62,118,41)(3,40,138,149,83,61,119,60)(4,39,139,148,84,80,120,59)(5,38,140,147,85,79,101,58)(6,37,121,146,86,78,102,57)(7,36,122,145,87,77,103,56)(8,35,123,144,88,76,104,55)(9,34,124,143,89,75,105,54)(10,33,125,142,90,74,106,53)(11,32,126,141,91,73,107,52)(12,31,127,160,92,72,108,51)(13,30,128,159,93,71,109,50)(14,29,129,158,94,70,110,49)(15,28,130,157,95,69,111,48)(16,27,131,156,96,68,112,47)(17,26,132,155,97,67,113,46)(18,25,133,154,98,66,114,45)(19,24,134,153,99,65,115,44)(20,23,135,152,100,64,116,43) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,22,136,151,81,63,117,42),(2,21,137,150,82,62,118,41),(3,40,138,149,83,61,119,60),(4,39,139,148,84,80,120,59),(5,38,140,147,85,79,101,58),(6,37,121,146,86,78,102,57),(7,36,122,145,87,77,103,56),(8,35,123,144,88,76,104,55),(9,34,124,143,89,75,105,54),(10,33,125,142,90,74,106,53),(11,32,126,141,91,73,107,52),(12,31,127,160,92,72,108,51),(13,30,128,159,93,71,109,50),(14,29,129,158,94,70,110,49),(15,28,130,157,95,69,111,48),(16,27,131,156,96,68,112,47),(17,26,132,155,97,67,113,46),(18,25,133,154,98,66,114,45),(19,24,134,153,99,65,115,44),(20,23,135,152,100,64,116,43)]])

C20:3C8 is a maximal subgroup of
Dic10:3C8  C40:6C8  C40:5C8  D20:3C8  C20.53D8  C20.39SD16  C4.Dic20  C20.47D8  C4.D40  C20.2D8  C20.57D8  C20.26Q16  C20.9D8  C20.5Q16  C20.10D8  C8xDic10  C40:11Q8  C8xD20  C8:6D20  C40:Q8  C8:9D20  D5xC4:C8  C42.200D10  C42.202D10  C20:5M4(2)  C42.30D10  C42.31D10  C20:13M4(2)  C42.6Dic5  C42.7Dic5  C42.43D10  C42.187D10  C20.50D8  C20.38SD16  D4.3Dic10  D4xC5:2C8  C42.47D10  C20:7M4(2)  C20:7D8  D4.1D20  D4.2D20  C20.48SD16  C20.23Q16  Q8.3Dic10  Q8xC5:2C8  C42.210D10  Q8:D20  Q8.1D20  C20:7Q16  C42.61D10  D20.23D4  Dic10.4Q8  D20.4Q8  C20:2D8  Dic10:9D4  C20:5SD16  D20:5Q8  D20:6Q8  C20:Q16  Dic10:5Q8  Dic10:6Q8  C60.15Q8  C60:5C8
C20:3C8 is a maximal quotient of
C40:6C8  C40:5C8  C20:3C16  C40.7C8  (C2xC20):8C8  C60.15Q8  C60:5C8

52 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H5A5B8A···8H10A···10F20A···20X
order122244444444558···810···1020···20
size1111111122222210···102···22···2

52 irreducible representations

dim111112222222222
type++++-+-+-+
imageC1C2C2C4C8D4Q8D5M4(2)Dic5D10C5:2C8Dic10D20C4.Dic5
kernelC20:3C8C2xC5:2C8C4xC20C2xC20C20C20C20C42C10C2xC4C2xC4C4C4C4C2
# reps121481122428448

Matrix representation of C20:3C8 in GL3(F41) generated by

4000
0282
03916
,
1400
0140
03927
G:=sub<GL(3,GF(41))| [40,0,0,0,28,39,0,2,16],[14,0,0,0,14,39,0,0,27] >;

C20:3C8 in GAP, Magma, Sage, TeX

C_{20}\rtimes_3C_8
% in TeX

G:=Group("C20:3C8");
// GroupNames label

G:=SmallGroup(160,11);
// by ID

G=gap.SmallGroup(160,11);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,55,86,4613]);
// Polycyclic

G:=Group<a,b|a^20=b^8=1,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C20:3C8 in TeX

׿
x
:
Z
F
o
wr
Q
<