direct product, abelian, monomial, 5-elementary
Aliases: C5×C15, SmallGroup(75,3)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5×C15 |
C1 — C5×C15 |
C1 — C5×C15 |
Generators and relations for C5×C15
G = < a,b | a5=b15=1, ab=ba >
(1 21 46 68 38)(2 22 47 69 39)(3 23 48 70 40)(4 24 49 71 41)(5 25 50 72 42)(6 26 51 73 43)(7 27 52 74 44)(8 28 53 75 45)(9 29 54 61 31)(10 30 55 62 32)(11 16 56 63 33)(12 17 57 64 34)(13 18 58 65 35)(14 19 59 66 36)(15 20 60 67 37)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)
G:=sub<Sym(75)| (1,21,46,68,38)(2,22,47,69,39)(3,23,48,70,40)(4,24,49,71,41)(5,25,50,72,42)(6,26,51,73,43)(7,27,52,74,44)(8,28,53,75,45)(9,29,54,61,31)(10,30,55,62,32)(11,16,56,63,33)(12,17,57,64,34)(13,18,58,65,35)(14,19,59,66,36)(15,20,60,67,37), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)>;
G:=Group( (1,21,46,68,38)(2,22,47,69,39)(3,23,48,70,40)(4,24,49,71,41)(5,25,50,72,42)(6,26,51,73,43)(7,27,52,74,44)(8,28,53,75,45)(9,29,54,61,31)(10,30,55,62,32)(11,16,56,63,33)(12,17,57,64,34)(13,18,58,65,35)(14,19,59,66,36)(15,20,60,67,37), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75) );
G=PermutationGroup([[(1,21,46,68,38),(2,22,47,69,39),(3,23,48,70,40),(4,24,49,71,41),(5,25,50,72,42),(6,26,51,73,43),(7,27,52,74,44),(8,28,53,75,45),(9,29,54,61,31),(10,30,55,62,32),(11,16,56,63,33),(12,17,57,64,34),(13,18,58,65,35),(14,19,59,66,36),(15,20,60,67,37)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)]])
C5×C15 is a maximal subgroup of
C5⋊D15 C52⋊C9
75 conjugacy classes
class | 1 | 3A | 3B | 5A | ··· | 5X | 15A | ··· | 15AV |
order | 1 | 3 | 3 | 5 | ··· | 5 | 15 | ··· | 15 |
size | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
75 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | |||
image | C1 | C3 | C5 | C15 |
kernel | C5×C15 | C52 | C15 | C5 |
# reps | 1 | 2 | 24 | 48 |
Matrix representation of C5×C15 ►in GL2(𝔽31) generated by
16 | 0 |
0 | 4 |
2 | 0 |
0 | 20 |
G:=sub<GL(2,GF(31))| [16,0,0,4],[2,0,0,20] >;
C5×C15 in GAP, Magma, Sage, TeX
C_5\times C_{15}
% in TeX
G:=Group("C5xC15");
// GroupNames label
G:=SmallGroup(75,3);
// by ID
G=gap.SmallGroup(75,3);
# by ID
G:=PCGroup([3,-3,-5,-5]);
// Polycyclic
G:=Group<a,b|a^5=b^15=1,a*b=b*a>;
// generators/relations
Export