Copied to
clipboard

G = D111order 222 = 2·3·37

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D111, C37⋊S3, C3⋊D37, C1111C2, sometimes denoted D222 or Dih111 or Dih222, SmallGroup(222,5)

Series: Derived Chief Lower central Upper central

C1C111 — D111
C1C37C111 — D111
C111 — D111
C1

Generators and relations for D111
 G = < a,b | a111=b2=1, bab=a-1 >

111C2
37S3
3D37

Smallest permutation representation of D111
On 111 points
Generators in S111
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111)
(1 111)(2 110)(3 109)(4 108)(5 107)(6 106)(7 105)(8 104)(9 103)(10 102)(11 101)(12 100)(13 99)(14 98)(15 97)(16 96)(17 95)(18 94)(19 93)(20 92)(21 91)(22 90)(23 89)(24 88)(25 87)(26 86)(27 85)(28 84)(29 83)(30 82)(31 81)(32 80)(33 79)(34 78)(35 77)(36 76)(37 75)(38 74)(39 73)(40 72)(41 71)(42 70)(43 69)(44 68)(45 67)(46 66)(47 65)(48 64)(49 63)(50 62)(51 61)(52 60)(53 59)(54 58)(55 57)

G:=sub<Sym(111)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (1,111)(2,110)(3,109)(4,108)(5,107)(6,106)(7,105)(8,104)(9,103)(10,102)(11,101)(12,100)(13,99)(14,98)(15,97)(16,96)(17,95)(18,94)(19,93)(20,92)(21,91)(22,90)(23,89)(24,88)(25,87)(26,86)(27,85)(28,84)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (1,111)(2,110)(3,109)(4,108)(5,107)(6,106)(7,105)(8,104)(9,103)(10,102)(11,101)(12,100)(13,99)(14,98)(15,97)(16,96)(17,95)(18,94)(19,93)(20,92)(21,91)(22,90)(23,89)(24,88)(25,87)(26,86)(27,85)(28,84)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111)], [(1,111),(2,110),(3,109),(4,108),(5,107),(6,106),(7,105),(8,104),(9,103),(10,102),(11,101),(12,100),(13,99),(14,98),(15,97),(16,96),(17,95),(18,94),(19,93),(20,92),(21,91),(22,90),(23,89),(24,88),(25,87),(26,86),(27,85),(28,84),(29,83),(30,82),(31,81),(32,80),(33,79),(34,78),(35,77),(36,76),(37,75),(38,74),(39,73),(40,72),(41,71),(42,70),(43,69),(44,68),(45,67),(46,66),(47,65),(48,64),(49,63),(50,62),(51,61),(52,60),(53,59),(54,58),(55,57)])

D111 is a maximal subgroup of   S3×D37
D111 is a maximal quotient of   Dic111

57 conjugacy classes

class 1  2  3 37A···37R111A···111AJ
order12337···37111···111
size111122···22···2

57 irreducible representations

dim11222
type+++++
imageC1C2S3D37D111
kernelD111C111C37C3C1
# reps1111836

Matrix representation of D111 in GL2(𝔽223) generated by

4115
20887
,
4115
111182
G:=sub<GL(2,GF(223))| [41,208,15,87],[41,111,15,182] >;

D111 in GAP, Magma, Sage, TeX

D_{111}
% in TeX

G:=Group("D111");
// GroupNames label

G:=SmallGroup(222,5);
// by ID

G=gap.SmallGroup(222,5);
# by ID

G:=PCGroup([3,-2,-3,-37,25,1946]);
// Polycyclic

G:=Group<a,b|a^111=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D111 in TeX

׿
×
𝔽