# Extensions 1→N→G→Q→1 with N=C2×D4 and Q=S3

Direct product G=N×Q with N=C2×D4 and Q=S3
dρLabelID
C2×S3×D424C2xS3xD496,209

Semidirect products G=N:Q with N=C2×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1S3 = C2×D4⋊S3φ: S3/C3C2 ⊆ Out C2×D448(C2xD4):1S396,138
(C2×D4)⋊2S3 = D126C22φ: S3/C3C2 ⊆ Out C2×D4244(C2xD4):2S396,139
(C2×D4)⋊3S3 = C232D6φ: S3/C3C2 ⊆ Out C2×D424(C2xD4):3S396,144
(C2×D4)⋊4S3 = D63D4φ: S3/C3C2 ⊆ Out C2×D448(C2xD4):4S396,145
(C2×D4)⋊5S3 = C23.14D6φ: S3/C3C2 ⊆ Out C2×D448(C2xD4):5S396,146
(C2×D4)⋊6S3 = C123D4φ: S3/C3C2 ⊆ Out C2×D448(C2xD4):6S396,147
(C2×D4)⋊7S3 = D46D6φ: S3/C3C2 ⊆ Out C2×D4244(C2xD4):7S396,211
(C2×D4)⋊8S3 = C2×D42S3φ: trivial image48(C2xD4):8S396,210

Non-split extensions G=N.Q with N=C2×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×D4).1S3 = D4⋊Dic3φ: S3/C3C2 ⊆ Out C2×D448(C2xD4).1S396,39
(C2×D4).2S3 = C12.D4φ: S3/C3C2 ⊆ Out C2×D4244(C2xD4).2S396,40
(C2×D4).3S3 = C23.7D6φ: S3/C3C2 ⊆ Out C2×D4244(C2xD4).3S396,41
(C2×D4).4S3 = C2×D4.S3φ: S3/C3C2 ⊆ Out C2×D448(C2xD4).4S396,140
(C2×D4).5S3 = C23.23D6φ: S3/C3C2 ⊆ Out C2×D448(C2xD4).5S396,142
(C2×D4).6S3 = C23.12D6φ: S3/C3C2 ⊆ Out C2×D448(C2xD4).6S396,143
(C2×D4).7S3 = D4×Dic3φ: trivial image48(C2xD4).7S396,141

׿
×
𝔽