direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary
Aliases: C2×S3×D4, C12⋊C23, C23⋊4D6, D6⋊2C23, C6.5C24, D12⋊7C22, Dic3⋊1C23, (C2×C4)⋊6D6, C6⋊2(C2×D4), (C2×C6)⋊C23, (C6×D4)⋊5C2, C3⋊2(C22×D4), C4⋊1(C22×S3), (C2×D12)⋊11C2, (C4×S3)⋊3C22, (S3×C23)⋊4C2, (C2×C12)⋊2C22, (C3×D4)⋊5C22, C3⋊D4⋊1C22, C2.6(S3×C23), C22⋊2(C22×S3), (C22×C6)⋊4C22, (C22×S3)⋊6C22, (C2×Dic3)⋊8C22, (S3×C2×C4)⋊3C2, (C2×C3⋊D4)⋊9C2, SmallGroup(96,209)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×S3×D4
G = < a,b,c,d,e | a2=b3=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 562 in 236 conjugacy classes, 97 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, S3, C6, C6, C6, C2×C4, C2×C4, D4, D4, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22×C4, C2×D4, C2×D4, C24, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×S3, C22×S3, C22×C6, C22×D4, S3×C2×C4, C2×D12, S3×D4, C2×C3⋊D4, C6×D4, S3×C23, C2×S3×D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C22×S3, C22×D4, S3×D4, S3×C23, C2×S3×D4
Character table of C2×S3×D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ21 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ22 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ23 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ24 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ25 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ27 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ28 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ30 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
(1 8)(2 5)(3 6)(4 7)(9 21)(10 22)(11 23)(12 24)(13 20)(14 17)(15 18)(16 19)
(1 21 20)(2 22 17)(3 23 18)(4 24 19)(5 10 14)(6 11 15)(7 12 16)(8 9 13)
(1 8)(2 5)(3 6)(4 7)(9 20)(10 17)(11 18)(12 19)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 21)(10 24)(11 23)(12 22)(13 20)(14 19)(15 18)(16 17)
G:=sub<Sym(24)| (1,8)(2,5)(3,6)(4,7)(9,21)(10,22)(11,23)(12,24)(13,20)(14,17)(15,18)(16,19), (1,21,20)(2,22,17)(3,23,18)(4,24,19)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,8)(2,5)(3,6)(4,7)(9,20)(10,17)(11,18)(12,19)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,21)(10,24)(11,23)(12,22)(13,20)(14,19)(15,18)(16,17)>;
G:=Group( (1,8)(2,5)(3,6)(4,7)(9,21)(10,22)(11,23)(12,24)(13,20)(14,17)(15,18)(16,19), (1,21,20)(2,22,17)(3,23,18)(4,24,19)(5,10,14)(6,11,15)(7,12,16)(8,9,13), (1,8)(2,5)(3,6)(4,7)(9,20)(10,17)(11,18)(12,19)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,21)(10,24)(11,23)(12,22)(13,20)(14,19)(15,18)(16,17) );
G=PermutationGroup([[(1,8),(2,5),(3,6),(4,7),(9,21),(10,22),(11,23),(12,24),(13,20),(14,17),(15,18),(16,19)], [(1,21,20),(2,22,17),(3,23,18),(4,24,19),(5,10,14),(6,11,15),(7,12,16),(8,9,13)], [(1,8),(2,5),(3,6),(4,7),(9,20),(10,17),(11,18),(12,19),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,21),(10,24),(11,23),(12,22),(13,20),(14,19),(15,18),(16,17)]])
G:=TransitiveGroup(24,143);
C2×S3×D4 is a maximal subgroup of
C4⋊C4⋊19D6 D4⋊D12 D6⋊5SD16 D12⋊D4 D6⋊6SD16 C42⋊13D6 D4⋊5D12 C24⋊7D6 C24⋊8D6 C6.372+ 1+4 C6.382+ 1+4 D12⋊19D4 C6.402+ 1+4 D12⋊20D4 C6.1202+ 1+4 C6.1212+ 1+4 C42⋊20D6 D12⋊10D4 C42⋊28D6 D12⋊11D4 C6.1452+ 1+4
C2×S3×D4 is a maximal quotient of
C24.38D6 C6.2- 1+4 C42⋊14D6 C42.228D6 D12⋊23D4 D12⋊24D4 Dic6⋊23D4 Dic6⋊24D4 C24.67D6 C24⋊7D6 C24⋊8D6 C24.44D6 C24.45D6 C12⋊(C4○D4) C6.322+ 1+4 Dic6⋊19D4 Dic6⋊20D4 C6.372+ 1+4 C4⋊C4⋊21D6 C6.382+ 1+4 C6.722- 1+4 D12⋊19D4 C6.402+ 1+4 C6.732- 1+4 D12⋊20D4 C4⋊C4⋊26D6 C6.162- 1+4 C6.172- 1+4 D12⋊21D4 D12⋊22D4 Dic6⋊21D4 Dic6⋊22D4 C6.792- 1+4 C6.1202+ 1+4 C6.1212+ 1+4 C6.822- 1+4 C4⋊C4⋊28D6 C42.233D6 C42⋊20D6 C42.141D6 D12⋊10D4 Dic6⋊10D4 C42⋊28D6 C42.238D6 D12⋊11D4 Dic6⋊11D4 C42.171D6 C42.240D6 D12⋊12D4 D12⋊8Q8 D8⋊13D6 SD16⋊13D6 D12.30D4 SD16⋊D6 D8⋊15D6 D8⋊11D6 D8.10D6 D8⋊4D6 D8⋊5D6 D8⋊6D6 D24⋊C22 C24.C23 SD16.D6
Matrix representation of C2×S3×D4 ►in GL4(𝔽13) generated by
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 |
1 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 10 |
0 | 0 | 5 | 12 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 5 | 12 |
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,12,12,0,0,0,0,1,0,0,0,0,1],[0,12,0,0,12,0,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,1,5,0,0,10,12],[1,0,0,0,0,1,0,0,0,0,1,5,0,0,0,12] >;
C2×S3×D4 in GAP, Magma, Sage, TeX
C_2\times S_3\times D_4
% in TeX
G:=Group("C2xS3xD4");
// GroupNames label
G:=SmallGroup(96,209);
// by ID
G=gap.SmallGroup(96,209);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,159,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export