metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12.7D4, C6.12D8, D4⋊1Dic3, C6.6SD16, (C3×D4)⋊1C4, C12.7(C2×C4), (C2×D4).1S3, (C6×D4).1C2, (C2×C4).39D6, (C2×C6).33D4, C3⋊3(D4⋊C4), C4⋊Dic3⋊10C2, C2.3(D4⋊S3), C4.1(C2×Dic3), C4.12(C3⋊D4), C2.3(D4.S3), C6.13(C22⋊C4), (C2×C12).16C22, C2.3(C6.D4), C22.17(C3⋊D4), (C2×C3⋊C8)⋊2C2, SmallGroup(96,39)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊Dic3
G = < a,b,c,d | a4=b2=c6=1, d2=c3, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >
Character table of D4⋊Dic3
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 8C | 8D | 12A | 12B | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | i | -i | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | -i | i | -1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -i | i | 1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | i | -i | -1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | i | -i | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | i | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | -2 | 2 | -2 | -1 | -2 | 2 | 0 | 0 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | -2 | 2 | -1 | -2 | 2 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | -1 | 1 | 1 | √-3 | -√-3 | -√-3 | √-3 | 0 | 0 | 0 | 0 | -1 | 1 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | -√-3 | √-3 | -√-3 | √-3 | 0 | 0 | 0 | 0 | 1 | 1 | complex lifted from C3⋊D4 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | -1 | 1 | 1 | -√-3 | √-3 | √-3 | -√-3 | 0 | 0 | 0 | 0 | -1 | 1 | complex lifted from C3⋊D4 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | complex lifted from SD16 |
ρ22 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | √-3 | -√-3 | √-3 | -√-3 | 0 | 0 | 0 | 0 | 1 | 1 | complex lifted from C3⋊D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊S3, Schur index 2 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
(1 27 23 7)(2 28 24 8)(3 29 19 9)(4 30 20 10)(5 25 21 11)(6 26 22 12)(13 41 33 46)(14 42 34 47)(15 37 35 48)(16 38 36 43)(17 39 31 44)(18 40 32 45)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(19 29)(20 30)(21 25)(22 26)(23 27)(24 28)(37 48)(38 43)(39 44)(40 45)(41 46)(42 47)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 41 4 38)(2 40 5 37)(3 39 6 42)(7 33 10 36)(8 32 11 35)(9 31 12 34)(13 30 16 27)(14 29 17 26)(15 28 18 25)(19 44 22 47)(20 43 23 46)(21 48 24 45)
G:=sub<Sym(48)| (1,27,23,7)(2,28,24,8)(3,29,19,9)(4,30,20,10)(5,25,21,11)(6,26,22,12)(13,41,33,46)(14,42,34,47)(15,37,35,48)(16,38,36,43)(17,39,31,44)(18,40,32,45), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(37,48)(38,43)(39,44)(40,45)(41,46)(42,47), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,41,4,38)(2,40,5,37)(3,39,6,42)(7,33,10,36)(8,32,11,35)(9,31,12,34)(13,30,16,27)(14,29,17,26)(15,28,18,25)(19,44,22,47)(20,43,23,46)(21,48,24,45)>;
G:=Group( (1,27,23,7)(2,28,24,8)(3,29,19,9)(4,30,20,10)(5,25,21,11)(6,26,22,12)(13,41,33,46)(14,42,34,47)(15,37,35,48)(16,38,36,43)(17,39,31,44)(18,40,32,45), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(37,48)(38,43)(39,44)(40,45)(41,46)(42,47), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,41,4,38)(2,40,5,37)(3,39,6,42)(7,33,10,36)(8,32,11,35)(9,31,12,34)(13,30,16,27)(14,29,17,26)(15,28,18,25)(19,44,22,47)(20,43,23,46)(21,48,24,45) );
G=PermutationGroup([[(1,27,23,7),(2,28,24,8),(3,29,19,9),(4,30,20,10),(5,25,21,11),(6,26,22,12),(13,41,33,46),(14,42,34,47),(15,37,35,48),(16,38,36,43),(17,39,31,44),(18,40,32,45)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(19,29),(20,30),(21,25),(22,26),(23,27),(24,28),(37,48),(38,43),(39,44),(40,45),(41,46),(42,47)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,41,4,38),(2,40,5,37),(3,39,6,42),(7,33,10,36),(8,32,11,35),(9,31,12,34),(13,30,16,27),(14,29,17,26),(15,28,18,25),(19,44,22,47),(20,43,23,46),(21,48,24,45)]])
D4⋊Dic3 is a maximal subgroup of
Dic3.D8 Dic3.SD16 D4⋊Dic6 D4.Dic6 C4⋊C4.D6 C12⋊Q8⋊C2 D4.2Dic6 (C2×C8).200D6 S3×D4⋊C4 C4⋊C4⋊19D6 D4⋊(C4×S3) D4⋊2S3⋊C4 D6.D8 D6.SD16 D6⋊C8⋊11C2 C24⋊1C4⋊C2 C12.50D8 C12.38SD16 D4.3Dic6 C4×D4⋊S3 C42.48D6 C4×D4.S3 C42.51D6 (C2×C6).D8 C4⋊D4.S3 C6.Q16⋊C2 C3⋊C8⋊22D4 C4⋊D4⋊S3 C3⋊C8⋊23D4 C3⋊C8⋊5D4 C42.61D6 C42.62D6 C42.213D6 D12.23D4 C12.16D8 C42.72D6 C12⋊2D8 Dic6⋊9D4 Dic3×D8 Dic3⋊D8 D8⋊Dic3 (C6×D8).C2 D12⋊D4 D6⋊3D8 Dic6⋊D4 C24⋊12D4 Dic3×SD16 Dic3⋊5SD16 SD16⋊Dic3 (C3×Q8).D4 D6⋊6SD16 C24⋊14D4 Dic6.16D4 C24⋊8D4 (C6×D4)⋊6C4 (C2×C6)⋊8D8 (C3×D4).31D4 C4○D4⋊3Dic3 C4○D4⋊4Dic3 (C3×D4)⋊14D4 (C3×D4).32D4 D4⋊Dic9 D12⋊3Dic3 C6.16D24 C62.116D4 C30.D8 C6.D40 D4⋊Dic15 D20⋊Dic3
D4⋊Dic3 is a maximal quotient of
C12.C42 C12.57D8 (C6×D4)⋊C4 C12.9D8 C12.10D8 D8⋊1Dic3 D8.Dic3 C6.5Q32 Q16.Dic3 D8⋊2Dic3 C24.41D4 D4⋊Dic9 D12⋊3Dic3 C6.16D24 C62.116D4 C30.D8 C6.D40 D4⋊Dic15 D20⋊Dic3
Matrix representation of D4⋊Dic3 ►in GL4(𝔽73) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 66 |
0 | 0 | 42 | 72 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 66 |
0 | 0 | 0 | 72 |
65 | 0 | 0 | 0 |
71 | 9 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
27 | 26 | 0 | 0 |
0 | 46 | 0 | 0 |
0 | 0 | 0 | 39 |
0 | 0 | 15 | 0 |
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,1,42,0,0,66,72],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,66,72],[65,71,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[27,0,0,0,26,46,0,0,0,0,0,15,0,0,39,0] >;
D4⋊Dic3 in GAP, Magma, Sage, TeX
D_4\rtimes {\rm Dic}_3
% in TeX
G:=Group("D4:Dic3");
// GroupNames label
G:=SmallGroup(96,39);
// by ID
G=gap.SmallGroup(96,39);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,24,121,579,297,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^6=1,d^2=c^3,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of D4⋊Dic3 in TeX
Character table of D4⋊Dic3 in TeX