# Extensions 1→N→G→Q→1 with N=C3×M4(2) and Q=C2

Direct product G=N×Q with N=C3×M4(2) and Q=C2
dρLabelID
C6×M4(2)48C6xM4(2)96,177

Semidirect products G=N:Q with N=C3×M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×M4(2))⋊1C2 = C8⋊D6φ: C2/C1C2 ⊆ Out C3×M4(2)244+(C3xM4(2)):1C296,115
(C3×M4(2))⋊2C2 = C8.D6φ: C2/C1C2 ⊆ Out C3×M4(2)484-(C3xM4(2)):2C296,116
(C3×M4(2))⋊3C2 = C3×C8⋊C22φ: C2/C1C2 ⊆ Out C3×M4(2)244(C3xM4(2)):3C296,183
(C3×M4(2))⋊4C2 = C3×C8.C22φ: C2/C1C2 ⊆ Out C3×M4(2)484(C3xM4(2)):4C296,184
(C3×M4(2))⋊5C2 = S3×M4(2)φ: C2/C1C2 ⊆ Out C3×M4(2)244(C3xM4(2)):5C296,113
(C3×M4(2))⋊6C2 = D12.C4φ: C2/C1C2 ⊆ Out C3×M4(2)484(C3xM4(2)):6C296,114
(C3×M4(2))⋊7C2 = C12.46D4φ: C2/C1C2 ⊆ Out C3×M4(2)244+(C3xM4(2)):7C296,30
(C3×M4(2))⋊8C2 = D12⋊C4φ: C2/C1C2 ⊆ Out C3×M4(2)244(C3xM4(2)):8C296,32
(C3×M4(2))⋊9C2 = C3×C4.D4φ: C2/C1C2 ⊆ Out C3×M4(2)244(C3xM4(2)):9C296,50
(C3×M4(2))⋊10C2 = C3×C4≀C2φ: C2/C1C2 ⊆ Out C3×M4(2)242(C3xM4(2)):10C296,54
(C3×M4(2))⋊11C2 = C3×C8○D4φ: trivial image482(C3xM4(2)):11C296,178

Non-split extensions G=N.Q with N=C3×M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×M4(2)).1C2 = C12.53D4φ: C2/C1C2 ⊆ Out C3×M4(2)484(C3xM4(2)).1C296,29
(C3×M4(2)).2C2 = C12.47D4φ: C2/C1C2 ⊆ Out C3×M4(2)484-(C3xM4(2)).2C296,31
(C3×M4(2)).3C2 = C3×C4.10D4φ: C2/C1C2 ⊆ Out C3×M4(2)484(C3xM4(2)).3C296,51
(C3×M4(2)).4C2 = C3×C8.C4φ: C2/C1C2 ⊆ Out C3×M4(2)482(C3xM4(2)).4C296,58

׿
×
𝔽