direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C6×M4(2), C12○M4(2), C24⋊14C22, C23.4C12, C12.53C23, (C2×C8)⋊6C6, C8⋊4(C2×C6), (C2×C24)⋊14C2, (C2×C4).6C12, C4○(C3×M4(2)), (C2×C12).15C4, C4.10(C2×C12), C12.47(C2×C4), C12○(C3×M4(2)), (C22×C6).4C4, (C22×C4).8C6, C4.11(C22×C6), C22.6(C2×C12), C2.6(C22×C12), C6.34(C22×C4), (C22×C12).16C2, (C2×C12).127C22, (C2×C6).23(C2×C4), (C2×C4).33(C2×C6), SmallGroup(96,177)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6×M4(2)
G = < a,b,c | a6=b8=c2=1, ab=ba, ac=ca, cbc=b5 >
Subgroups: 76 in 68 conjugacy classes, 60 normal (20 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C23, C12, C12, C2×C6, C2×C6, C2×C6, C2×C8, M4(2), C22×C4, C24, C2×C12, C2×C12, C22×C6, C2×M4(2), C2×C24, C3×M4(2), C22×C12, C6×M4(2)
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C12, C2×C6, M4(2), C22×C4, C2×C12, C22×C6, C2×M4(2), C3×M4(2), C22×C12, C6×M4(2)
(1 11 34 18 45 30)(2 12 35 19 46 31)(3 13 36 20 47 32)(4 14 37 21 48 25)(5 15 38 22 41 26)(6 16 39 23 42 27)(7 9 40 24 43 28)(8 10 33 17 44 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)(25 29)(27 31)(33 37)(35 39)(42 46)(44 48)
G:=sub<Sym(48)| (1,11,34,18,45,30)(2,12,35,19,46,31)(3,13,36,20,47,32)(4,14,37,21,48,25)(5,15,38,22,41,26)(6,16,39,23,42,27)(7,9,40,24,43,28)(8,10,33,17,44,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(42,46)(44,48)>;
G:=Group( (1,11,34,18,45,30)(2,12,35,19,46,31)(3,13,36,20,47,32)(4,14,37,21,48,25)(5,15,38,22,41,26)(6,16,39,23,42,27)(7,9,40,24,43,28)(8,10,33,17,44,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(42,46)(44,48) );
G=PermutationGroup([[(1,11,34,18,45,30),(2,12,35,19,46,31),(3,13,36,20,47,32),(4,14,37,21,48,25),(5,15,38,22,41,26),(6,16,39,23,42,27),(7,9,40,24,43,28),(8,10,33,17,44,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23),(25,29),(27,31),(33,37),(35,39),(42,46),(44,48)]])
C6×M4(2) is a maximal subgroup of
C24.D4 M4(2)⋊Dic3 C12.3C42 (C2×C24)⋊C4 C12.20C42 C12.4C42 M4(2)⋊4Dic3 C12.21C42 Dic3⋊4M4(2) C12.88(C2×Q8) C23.51D12 C23.52D12 C12.7C42 C23.8Dic6 C23.9Dic6 D6⋊6M4(2) C24⋊D4 C24⋊21D4 D6⋊C8⋊40C2 C23.53D12 M4(2).31D6 C23.54D12 C24⋊2D4 C24⋊3D4 C24.4D4 M4(2)⋊24D6 M4(2)⋊26D6 C24.9C23
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 8A | ··· | 8H | 12A | ··· | 12H | 12I | 12J | 12K | 12L | 24A | ··· | 24P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 8 | ··· | 8 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C6 | C12 | C12 | M4(2) | C3×M4(2) |
kernel | C6×M4(2) | C2×C24 | C3×M4(2) | C22×C12 | C2×M4(2) | C2×C12 | C22×C6 | C2×C8 | M4(2) | C22×C4 | C2×C4 | C23 | C6 | C2 |
# reps | 1 | 2 | 4 | 1 | 2 | 6 | 2 | 4 | 8 | 2 | 12 | 4 | 4 | 8 |
Matrix representation of C6×M4(2) ►in GL3(𝔽73) generated by
9 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
72 | 0 | 0 |
0 | 0 | 72 |
0 | 27 | 0 |
72 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 72 |
G:=sub<GL(3,GF(73))| [9,0,0,0,1,0,0,0,1],[72,0,0,0,0,27,0,72,0],[72,0,0,0,1,0,0,0,72] >;
C6×M4(2) in GAP, Magma, Sage, TeX
C_6\times M_4(2)
% in TeX
G:=Group("C6xM4(2)");
// GroupNames label
G:=SmallGroup(96,177);
// by ID
G=gap.SmallGroup(96,177);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-2,-2,144,601,88]);
// Polycyclic
G:=Group<a,b,c|a^6=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^5>;
// generators/relations