Copied to
clipboard

G = C3×C8○D4order 96 = 25·3

Direct product of C3 and C8○D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C8○D4, D4C24, Q8C24, D4.C12, M4(2)C24, Q8.2C12, M4(2)⋊5C6, C24.30C22, C12.54C23, C8(C3×D4), C8(C3×Q8), (C2×C8)⋊7C6, C4○D4C24, C24(C3×D4), C24(C3×Q8), C8.7(C2×C6), (C2×C24)⋊15C2, C4.5(C2×C12), C4○D4.5C6, (C3×D4).2C4, C8(C3×M4(2)), (C3×Q8).2C4, C12.32(C2×C4), C24(C3×M4(2)), C2.7(C22×C12), C4.12(C22×C6), C22.1(C2×C12), C6.35(C22×C4), (C3×M4(2))⋊11C2, (C2×C12).128C22, C8(C3×C4○D4), C24(C3×C4○D4), (C2×C6).8(C2×C4), (C2×C4).24(C2×C6), (C3×C4○D4).6C2, SmallGroup(96,178)

Series: Derived Chief Lower central Upper central

C1C2 — C3×C8○D4
C1C2C4C12C24C2×C24 — C3×C8○D4
C1C2 — C3×C8○D4
C1C24 — C3×C8○D4

Generators and relations for C3×C8○D4
 G = < a,b,c,d | a3=b8=d2=1, c2=b4, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b4c >

Subgroups: 68 in 62 conjugacy classes, 56 normal (14 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C8, C2×C4, D4, Q8, C12, C12, C2×C6, C2×C8, M4(2), C4○D4, C24, C24, C2×C12, C3×D4, C3×Q8, C8○D4, C2×C24, C3×M4(2), C3×C4○D4, C3×C8○D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C12, C2×C6, C22×C4, C2×C12, C22×C6, C8○D4, C22×C12, C3×C8○D4

Smallest permutation representation of C3×C8○D4
On 48 points
Generators in S48
(1 33 23)(2 34 24)(3 35 17)(4 36 18)(5 37 19)(6 38 20)(7 39 21)(8 40 22)(9 48 28)(10 41 29)(11 42 30)(12 43 31)(13 44 32)(14 45 25)(15 46 26)(16 47 27)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 43 5 47)(2 44 6 48)(3 45 7 41)(4 46 8 42)(9 24 13 20)(10 17 14 21)(11 18 15 22)(12 19 16 23)(25 39 29 35)(26 40 30 36)(27 33 31 37)(28 34 32 38)
(1 47)(2 48)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)(25 39)(26 40)(27 33)(28 34)(29 35)(30 36)(31 37)(32 38)

G:=sub<Sym(48)| (1,33,23)(2,34,24)(3,35,17)(4,36,18)(5,37,19)(6,38,20)(7,39,21)(8,40,22)(9,48,28)(10,41,29)(11,42,30)(12,43,31)(13,44,32)(14,45,25)(15,46,26)(16,47,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,43,5,47)(2,44,6,48)(3,45,7,41)(4,46,8,42)(9,24,13,20)(10,17,14,21)(11,18,15,22)(12,19,16,23)(25,39,29,35)(26,40,30,36)(27,33,31,37)(28,34,32,38), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38)>;

G:=Group( (1,33,23)(2,34,24)(3,35,17)(4,36,18)(5,37,19)(6,38,20)(7,39,21)(8,40,22)(9,48,28)(10,41,29)(11,42,30)(12,43,31)(13,44,32)(14,45,25)(15,46,26)(16,47,27), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,43,5,47)(2,44,6,48)(3,45,7,41)(4,46,8,42)(9,24,13,20)(10,17,14,21)(11,18,15,22)(12,19,16,23)(25,39,29,35)(26,40,30,36)(27,33,31,37)(28,34,32,38), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38) );

G=PermutationGroup([[(1,33,23),(2,34,24),(3,35,17),(4,36,18),(5,37,19),(6,38,20),(7,39,21),(8,40,22),(9,48,28),(10,41,29),(11,42,30),(12,43,31),(13,44,32),(14,45,25),(15,46,26),(16,47,27)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,43,5,47),(2,44,6,48),(3,45,7,41),(4,46,8,42),(9,24,13,20),(10,17,14,21),(11,18,15,22),(12,19,16,23),(25,39,29,35),(26,40,30,36),(27,33,31,37),(28,34,32,38)], [(1,47),(2,48),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23),(25,39),(26,40),(27,33),(28,34),(29,35),(30,36),(31,37),(32,38)]])

C3×C8○D4 is a maximal subgroup of
C24.99D4  C24.78C23  Q8.8D12  Q8.9D12  Q8.10D12  C24.100D4  C24.54D4  M4(2)⋊28D6  D4.11D12  D4.12D12  D4.13D12  Q8.C36
C3×C8○D4 is a maximal quotient of
D4×C24  Q8×C24

60 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E6A6B6C···6H8A8B8C8D8E···8J12A12B12C12D12E···12J24A···24H24I···24T
order122223344444666···688888···81212121212···1224···2424···24
size112221111222112···211112···211112···21···12···2

60 irreducible representations

dim11111111111122
type++++
imageC1C2C2C2C3C4C4C6C6C6C12C12C8○D4C3×C8○D4
kernelC3×C8○D4C2×C24C3×M4(2)C3×C4○D4C8○D4C3×D4C3×Q8C2×C8M4(2)C4○D4D4Q8C3C1
# reps133126266212448

Matrix representation of C3×C8○D4 in GL3(𝔽73) generated by

6400
010
001
,
100
0100
0010
,
7200
001
0720
,
100
001
010
G:=sub<GL(3,GF(73))| [64,0,0,0,1,0,0,0,1],[1,0,0,0,10,0,0,0,10],[72,0,0,0,0,72,0,1,0],[1,0,0,0,0,1,0,1,0] >;

C3×C8○D4 in GAP, Magma, Sage, TeX

C_3\times C_8\circ D_4
% in TeX

G:=Group("C3xC8oD4");
// GroupNames label

G:=SmallGroup(96,178);
// by ID

G=gap.SmallGroup(96,178);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-2,144,476,88]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=d^2=1,c^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^4*c>;
// generators/relations

׿
×
𝔽