Copied to
clipboard

G = C8:D6order 96 = 25·3

1st semidirect product of C8 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8:1D6, D24:2C2, C24:1C22, C12.12D4, C4.14D12, D12:4C22, M4(2):1S3, C22.5D12, C12.32C23, Dic6:4C22, (C2xC6).5D4, C24:C2:1C2, C4oD12:2C2, (C2xD12):7C2, C3:1(C8:C22), C6.13(C2xD4), (C2xC4).15D6, C2.15(C2xD12), (C3xM4(2)):1C2, C4.30(C22xS3), (C2xC12).27C22, SmallGroup(96,115)

Series: Derived Chief Lower central Upper central

C1C12 — C8:D6
C1C3C6C12D12C2xD12 — C8:D6
C3C6C12 — C8:D6
C1C2C2xC4M4(2)

Generators and relations for C8:D6
 G = < a,b,c | a8=b6=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >

Subgroups: 210 in 68 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, D6, C2xC6, M4(2), D8, SD16, C2xD4, C4oD4, C24, Dic6, C4xS3, D12, D12, D12, C3:D4, C2xC12, C22xS3, C8:C22, C24:C2, D24, C3xM4(2), C2xD12, C4oD12, C8:D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, D12, C22xS3, C8:C22, C2xD12, C8:D6

Character table of C8:D6

 class 12A2B2C2D2E34A4B4C6A6B8A8B12A12B12C24A24B24C24D
 size 1121212122221224442244444
ρ1111111111111111111111    trivial
ρ21111-1-1111111-1-1111-1-1-1-1    linear of order 2
ρ311-11-111-11-11-11-111-11-1-11    linear of order 2
ρ4111-111111-111-1-1111-1-1-1-1    linear of order 2
ρ511-1-11-11-1111-11-111-11-1-11    linear of order 2
ρ611-111-11-11-11-1-1111-1-111-1    linear of order 2
ρ7111-1-1-1111-111111111111    linear of order 2
ρ811-1-1-111-1111-1-1111-1-111-1    linear of order 2
ρ922-200022-202-200-2-220000    orthogonal lifted from D4
ρ10222000-1220-1-1-2-2-1-1-11111    orthogonal lifted from D6
ρ11222000-1220-1-122-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1222-2000-1-220-11-22-1-111-1-11    orthogonal lifted from D6
ρ132220002-2-202200-2-2-20000    orthogonal lifted from D4
ρ1422-2000-1-220-112-2-1-11-111-1    orthogonal lifted from D6
ρ1522-2000-12-20-110011-1-33-33    orthogonal lifted from D12
ρ1622-2000-12-20-110011-13-33-3    orthogonal lifted from D12
ρ17222000-1-2-20-1-100111-3-333    orthogonal lifted from D12
ρ18222000-1-2-20-1-10011133-3-3    orthogonal lifted from D12
ρ194-400004000-40000000000    orthogonal lifted from C8:C22
ρ204-40000-20002000-232300000    orthogonal faithful
ρ214-40000-2000200023-2300000    orthogonal faithful

Permutation representations of C8:D6
On 24 points - transitive group 24T107
Generators in S24
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 13 21)(2 10 22 6 14 18)(3 15 23)(4 12 24 8 16 20)(5 9 17)(7 11 19)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 24)(7 23)(8 22)(10 16)(11 15)(12 14)

G:=sub<Sym(24)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,13,21)(2,10,22,6,14,18)(3,15,23)(4,12,24,8,16,20)(5,9,17)(7,11,19), (1,21)(2,20)(3,19)(4,18)(5,17)(6,24)(7,23)(8,22)(10,16)(11,15)(12,14)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,13,21)(2,10,22,6,14,18)(3,15,23)(4,12,24,8,16,20)(5,9,17)(7,11,19), (1,21)(2,20)(3,19)(4,18)(5,17)(6,24)(7,23)(8,22)(10,16)(11,15)(12,14) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,13,21),(2,10,22,6,14,18),(3,15,23),(4,12,24,8,16,20),(5,9,17),(7,11,19)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,24),(7,23),(8,22),(10,16),(11,15),(12,14)]])

G:=TransitiveGroup(24,107);

C8:D6 is a maximal subgroup of
D12:1D4  D12.3D4  D12.5D4  D12.6D4  Q8:5D12  D4.10D12  C24.19D4  C24.42D4  C24.9C23  D4.11D12  D4.12D12  S3xC8:C22  D8:5D6  D24:C22  C24.C23  C8:D18  C24:1D6  D24:S3  D12:18D6  D12.28D6  C24:3D6  C24:D10  D24:D5  D60:36C22  C60.38D4  C8:D30
C8:D6 is a maximal quotient of
C8:Dic6  C42.16D6  D24:C4  C8:D12  C42.19D6  C42.20D6  C23.40D12  D12.31D4  D12:13D4  D12:14D4  C23.43D12  C23.18D12  D12:3Q8  C4:D24  D12.19D4  D12.3Q8  Dic6:8D4  Dic6:3Q8  C23.52D12  C23.53D12  C23.54D12  C24:2D4  C24:3D4  C8:D18  C24:1D6  D24:S3  D12:18D6  D12.28D6  C24:3D6  C24:D10  D24:D5  D60:36C22  C60.38D4  C8:D30

Matrix representation of C8:D6 in GL4(F73) generated by

0010
0001
71400
596600
,
1100
72000
007272
0010
,
727200
0100
00667
00147
G:=sub<GL(4,GF(73))| [0,0,7,59,0,0,14,66,1,0,0,0,0,1,0,0],[1,72,0,0,1,0,0,0,0,0,72,1,0,0,72,0],[72,0,0,0,72,1,0,0,0,0,66,14,0,0,7,7] >;

C8:D6 in GAP, Magma, Sage, TeX

C_8\rtimes D_6
% in TeX

G:=Group("C8:D6");
// GroupNames label

G:=SmallGroup(96,115);
// by ID

G=gap.SmallGroup(96,115);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,218,188,50,579,69,2309]);
// Polycyclic

G:=Group<a,b,c|a^8=b^6=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Character table of C8:D6 in TeX

׿
x
:
Z
F
o
wr
Q
<