# Extensions 1→N→G→Q→1 with N=C4○D12 and Q=C2

Direct product G=N×Q with N=C4○D12 and Q=C2
dρLabelID
C2×C4○D1248C2xC4oD1296,208

Semidirect products G=N:Q with N=C4○D12 and Q=C2
extensionφ:Q→Out NdρLabelID
C4○D121C2 = C4○D24φ: C2/C1C2 ⊆ Out C4○D12482C4oD12:1C296,111
C4○D122C2 = C8⋊D6φ: C2/C1C2 ⊆ Out C4○D12244+C4oD12:2C296,115
C4○D123C2 = D126C22φ: C2/C1C2 ⊆ Out C4○D12244C4oD12:3C296,139
C4○D124C2 = Q8.13D6φ: C2/C1C2 ⊆ Out C4○D12484C4oD12:4C296,157
C4○D125C2 = D46D6φ: C2/C1C2 ⊆ Out C4○D12244C4oD12:5C296,211
C4○D126C2 = Q8.15D6φ: C2/C1C2 ⊆ Out C4○D12484C4oD12:6C296,214
C4○D127C2 = S3×C4○D4φ: C2/C1C2 ⊆ Out C4○D12244C4oD12:7C296,215
C4○D128C2 = D4○D12φ: C2/C1C2 ⊆ Out C4○D12244+C4oD12:8C296,216
C4○D129C2 = Q8○D12φ: C2/C1C2 ⊆ Out C4○D12484-C4oD12:9C296,217

Non-split extensions G=N.Q with N=C4○D12 and Q=C2
extensionφ:Q→Out NdρLabelID
C4○D12.1C2 = C424S3φ: C2/C1C2 ⊆ Out C4○D12242C4oD12.1C296,12
C4○D12.2C2 = D12⋊C4φ: C2/C1C2 ⊆ Out C4○D12244C4oD12.2C296,32
C4○D12.3C2 = D12.C4φ: C2/C1C2 ⊆ Out C4○D12484C4oD12.3C296,114
C4○D12.4C2 = C8.D6φ: C2/C1C2 ⊆ Out C4○D12484-C4oD12.4C296,116
C4○D12.5C2 = Q8.11D6φ: C2/C1C2 ⊆ Out C4○D12484C4oD12.5C296,149
C4○D12.6C2 = C8○D12φ: trivial image482C4oD12.6C296,108

׿
×
𝔽