metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4○D12, D4⋊8D6, Q8⋊8D6, Q8○Dic6, C6.12C24, D6.7C23, C3⋊22+ 1+4, D12⋊11C22, C12.26C23, Dic6⋊12C22, Dic3.7C23, (C2×C4)⋊4D6, C4○D4⋊5S3, (S3×D4)⋊5C2, C4○D12⋊8C2, (C2×D12)⋊13C2, (C4×S3)⋊2C22, (C2×C12)⋊5C22, Q8⋊3S3⋊5C2, (C3×D4)⋊9C22, C3⋊D4⋊5C22, (C2×C6).4C23, (C3×Q8)⋊8C22, C2.13(S3×C23), C4.33(C22×S3), (C22×S3)⋊4C22, C22.3(C22×S3), (C3×C4○D4)⋊4C2, SmallGroup(96,216)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4○D12
G = < a,b,c,d | a4=b2=d2=1, c6=a2, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=a2c5 >
Subgroups: 394 in 166 conjugacy classes, 85 normal (12 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C2×D4, C4○D4, C4○D4, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C3×Q8, C22×S3, 2+ 1+4, C2×D12, C4○D12, S3×D4, Q8⋊3S3, C3×C4○D4, D4○D12
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2+ 1+4, S3×C23, D4○D12
Character table of D4○D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 12A | 12B | 12C | 12D | 12E | |
size | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | -2 | 2 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | 2 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | -2 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ21 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ22 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ23 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | -2 | -2 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ24 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | orthogonal faithful |
(1 13 7 19)(2 14 8 20)(3 15 9 21)(4 16 10 22)(5 17 11 23)(6 18 12 24)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)
G:=sub<Sym(24)| (1,13,7,19)(2,14,8,20)(3,15,9,21)(4,16,10,22)(5,17,11,23)(6,18,12,24), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)>;
G:=Group( (1,13,7,19)(2,14,8,20)(3,15,9,21)(4,16,10,22)(5,17,11,23)(6,18,12,24), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19) );
G=PermutationGroup([[(1,13,7,19),(2,14,8,20),(3,15,9,21),(4,16,10,22),(5,17,11,23),(6,18,12,24)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19)]])
G:=TransitiveGroup(24,102);
D4○D12 is a maximal subgroup of
Q8⋊5D12 C42⋊5D6 D12⋊18D4 D12.39D4 D4.11D12 D4.12D12 D8⋊15D6 D8⋊11D6 D8⋊5D6 C24.C23 D12.32C23 D12.34C23 C6.C25 S3×2+ 1+4 D12.39C23 D4⋊8D18 Dic6.A4 D12⋊24D6 D12⋊27D6 D12⋊13D6 D12⋊16D6 C62.154C23 D20⋊26D6 D20⋊29D6 D12⋊14D10 D20⋊17D6 D4⋊8D30
D4○D12 is a maximal quotient of
C42.90D6 C42⋊9D6 C42.91D6 C42⋊11D6 C42⋊12D6 C42.95D6 C42.97D6 C42.99D6 C42.100D6 D4⋊6Dic6 C42⋊13D6 D4×D12 D12⋊23D4 Dic6⋊24D4 C42⋊19D6 C42.116D6 C42.117D6 C42.119D6 Q8×Dic6 C42.126D6 Q8⋊7D12 D12⋊10Q8 C42.133D6 C42.136D6 C6.372+ 1+4 C6.382+ 1+4 D12⋊19D4 C6.462+ 1+4 C6.1152+ 1+4 C6.472+ 1+4 C6.482+ 1+4 C6.172- 1+4 D12⋊21D4 C6.512+ 1+4 C6.1182+ 1+4 C6.242- 1+4 C6.562+ 1+4 C6.592+ 1+4 C6.1202+ 1+4 C6.1212+ 1+4 C6.612+ 1+4 C6.1222+ 1+4 C6.662+ 1+4 C6.852- 1+4 C6.682+ 1+4 C6.692+ 1+4 C42⋊20D6 D12⋊10D4 C42⋊22D6 C42.143D6 C42.144D6 C42⋊24D6 C42.145D6 C42.148D6 D12⋊7Q8 C42.150D6 C42.153D6 C42.155D6 C42.157D6 C42.158D6 C42⋊25D6 C42⋊26D6 C42.161D6 C42.163D6 C42.164D6 C42⋊27D6 C42.165D6 C6.1442+ 1+4 C6.1452+ 1+4 C6.1462+ 1+4 C6.1082- 1+4 C6.1482+ 1+4 D4⋊8D18 D12⋊24D6 D12⋊27D6 D12⋊13D6 D12⋊16D6 C62.154C23 D20⋊26D6 D20⋊29D6 D12⋊14D10 D20⋊17D6 D4⋊8D30
Matrix representation of D4○D12 ►in GL4(𝔽13) generated by
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
10 | 3 | 0 | 0 |
10 | 7 | 0 | 0 |
0 | 0 | 10 | 3 |
0 | 0 | 10 | 7 |
1 | 1 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 0 | 12 |
G:=sub<GL(4,GF(13))| [0,0,12,0,0,0,0,12,1,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],[10,10,0,0,3,7,0,0,0,0,10,10,0,0,3,7],[1,0,0,0,1,12,0,0,0,0,1,0,0,0,1,12] >;
D4○D12 in GAP, Magma, Sage, TeX
D_4\circ D_{12}
% in TeX
G:=Group("D4oD12");
// GroupNames label
G:=SmallGroup(96,216);
// by ID
G=gap.SmallGroup(96,216);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,188,579,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=d^2=1,c^6=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=a^2*c^5>;
// generators/relations
Export