direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×C4○D4, D4⋊7D6, Q8⋊7D6, C6.11C24, D6.6C23, D12⋊10C22, C12.25C23, Dic6⋊10C22, Dic3.10C23, C4○(S3×D4), D4○(C4×S3), C4○(S3×Q8), Q8○(C4×S3), (C2×C4)⋊7D6, (S3×D4)⋊6C2, (S3×Q8)⋊6C2, C4○D12⋊7C2, C4○(D4⋊2S3), D4⋊2S3⋊6C2, (C4×S3)⋊7C22, (C2×C12)⋊4C22, C4○(Q8⋊3S3), Q8⋊3S3⋊6C2, Dic3○(C4○D4), (C3×D4)⋊8C22, C3⋊D4⋊4C22, (C2×C6).3C23, (C3×Q8)⋊7C22, C4.25(C22×S3), C2.12(S3×C23), C22.2(C22×S3), (C2×Dic3)⋊10C22, (C22×S3).31C22, (S3×C2×C4)⋊6C2, C3⋊4(C2×C4○D4), (C3×C4○D4)⋊3C2, SmallGroup(96,215)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×C4○D4
G = < a,b,c,d,e | a3=b2=c4=e2=1, d2=c2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d >
Subgroups: 330 in 164 conjugacy classes, 87 normal (16 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, S3, C6, C6, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, D6, C2×C6, C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic6, C4×S3, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×Q8, C22×S3, C2×C4○D4, S3×C2×C4, C4○D12, S3×D4, D4⋊2S3, S3×Q8, Q8⋊3S3, C3×C4○D4, S3×C4○D4
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, S3×C23, S3×C4○D4
Character table of S3×C4○D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | 6D | 12A | 12B | 12C | 12D | 12E | |
size | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 2 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ21 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ22 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ23 | 2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ24 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ25 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2i | -2i | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | -2i | 2i | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | 2i | -2i | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ28 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | -2i | 2i | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | complex faithful |
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 19 23)(14 20 24)(15 17 21)(16 18 22)
(1 3)(2 4)(5 11)(6 12)(7 9)(8 10)(13 21)(14 22)(15 23)(16 24)(17 19)(18 20)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 16 15 14)(17 20 19 18)(21 24 23 22)
(1 17)(2 18)(3 19)(4 20)(5 15)(6 16)(7 13)(8 14)(9 21)(10 22)(11 23)(12 24)
G:=sub<Sym(24)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,19,23)(14,20,24)(15,17,21)(16,18,22), (1,3)(2,4)(5,11)(6,12)(7,9)(8,10)(13,21)(14,22)(15,23)(16,24)(17,19)(18,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,16,15,14)(17,20,19,18)(21,24,23,22), (1,17)(2,18)(3,19)(4,20)(5,15)(6,16)(7,13)(8,14)(9,21)(10,22)(11,23)(12,24)>;
G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,19,23)(14,20,24)(15,17,21)(16,18,22), (1,3)(2,4)(5,11)(6,12)(7,9)(8,10)(13,21)(14,22)(15,23)(16,24)(17,19)(18,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,16,15,14)(17,20,19,18)(21,24,23,22), (1,17)(2,18)(3,19)(4,20)(5,15)(6,16)(7,13)(8,14)(9,21)(10,22)(11,23)(12,24) );
G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,19,23),(14,20,24),(15,17,21),(16,18,22)], [(1,3),(2,4),(5,11),(6,12),(7,9),(8,10),(13,21),(14,22),(15,23),(16,24),(17,19),(18,20)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,16,15,14),(17,20,19,18),(21,24,23,22)], [(1,17),(2,18),(3,19),(4,20),(5,15),(6,16),(7,13),(8,14),(9,21),(10,22),(11,23),(12,24)]])
G:=TransitiveGroup(24,101);
S3×C4○D4 is a maximal subgroup of
C42⋊3D6 M4(2)⋊28D6 SD16⋊D6 D8⋊4D6 D24⋊C22 C6.C25 D6.C24 D12.39C23 D12⋊23D6 Dic6⋊12D6 D12⋊15D6 D20⋊24D6 D30.C23 D20⋊16D6
S3×C4○D4 is a maximal quotient of
C42.88D6 C42.188D6 C42⋊10D6 C42⋊12D6 C42.93D6 C42.94D6 C42.95D6 C42.96D6 C42.97D6 C42.98D6 C4×D4⋊2S3 C42.102D6 D4⋊5Dic6 C42.104D6 C4×S3×D4 C42⋊14D6 C42.228D6 D4⋊5D12 C42⋊18D6 C42.229D6 C42.113D6 C42.114D6 C42.122D6 Q8⋊6Dic6 C4×S3×Q8 C4×Q8⋊3S3 Q8⋊6D12 C42.232D6 C42.131D6 C42.132D6 C12⋊(C4○D4) Dic6⋊20D4 C4⋊C4.178D6 C6.342+ 1+4 C4⋊C4⋊21D6 C6.402+ 1+4 D12⋊20D4 C6.422+ 1+4 C6.432+ 1+4 C6.442+ 1+4 C6.452+ 1+4 (Q8×Dic3)⋊C2 C4⋊C4.187D6 C4⋊C4⋊26D6 D12⋊22D4 Dic6⋊22D4 C6.522+ 1+4 C6.532+ 1+4 C6.202- 1+4 C6.212- 1+4 C6.222- 1+4 C6.232- 1+4 C4⋊C4.197D6 C6.802- 1+4 C6.1212+ 1+4 C6.822- 1+4 C4⋊C4⋊28D6 C6.612+ 1+4 C6.1222+ 1+4 C6.622+ 1+4 C6.632+ 1+4 C6.642+ 1+4 C6.652+ 1+4 C6.662+ 1+4 C6.672+ 1+4 C42.233D6 C42.137D6 C42.138D6 C42.139D6 D12⋊10D4 Dic6⋊10D4 C42⋊22D6 C42⋊23D6 C42.234D6 C42.143D6 Dic6⋊7Q8 C42.236D6 D12⋊7Q8 C42.237D6 C42.150D6 C42.151D6 C42.152D6 C42.153D6 C42.154D6 C42.159D6 C42.160D6 C42⋊25D6 C42⋊26D6 C42.189D6 C42.161D6 C42.162D6 C42.163D6 C42.164D6 C6.1042- 1+4 (C2×D4)⋊43D6 C6.1452+ 1+4 C6.1072- 1+4 (C2×C12)⋊17D4 C6.1482+ 1+4 D12⋊23D6 Dic6⋊12D6 D12⋊15D6 D20⋊24D6 D30.C23 D20⋊16D6
Matrix representation of S3×C4○D4 ►in GL4(𝔽5) generated by
4 | 0 | 3 | 0 |
0 | 4 | 0 | 2 |
3 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 3 |
2 | 0 | 4 | 0 |
0 | 2 | 0 | 0 |
3 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 3 |
2 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 3 |
0 | 2 | 0 | 1 |
0 | 0 | 4 | 0 |
0 | 4 | 0 | 0 |
1 | 0 | 2 | 0 |
G:=sub<GL(4,GF(5))| [4,0,3,0,0,4,0,2,3,0,0,0,0,2,0,0],[1,0,2,0,0,0,0,2,0,0,4,0,0,3,0,0],[3,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3],[2,0,0,0,0,3,0,0,0,0,2,0,0,0,0,3],[0,0,0,1,2,0,4,0,0,4,0,2,1,0,0,0] >;
S3×C4○D4 in GAP, Magma, Sage, TeX
S_3\times C_4\circ D_4
% in TeX
G:=Group("S3xC4oD4");
// GroupNames label
G:=SmallGroup(96,215);
// by ID
G=gap.SmallGroup(96,215);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,86,297,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^4=e^2=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d>;
// generators/relations
Export