Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C4

Direct product G=NxQ with N=C2xDic3 and Q=C4
dρLabelID
C2xC4xDic396C2xC4xDic396,129

Semidirect products G=N:Q with N=C2xDic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xDic3):C4 = C23.6D6φ: C4/C1C4 ⊆ Out C2xDic3244(C2xDic3):C496,13
(C2xDic3):2C4 = C6.C42φ: C4/C2C2 ⊆ Out C2xDic396(C2xDic3):2C496,38
(C2xDic3):3C4 = C23.16D6φ: C4/C2C2 ⊆ Out C2xDic348(C2xDic3):3C496,84
(C2xDic3):4C4 = C2xDic3:C4φ: C4/C2C2 ⊆ Out C2xDic396(C2xDic3):4C496,130

Non-split extensions G=N.Q with N=C2xDic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xDic3).C4 = C12.47D4φ: C4/C1C4 ⊆ Out C2xDic3484-(C2xDic3).C496,31
(C2xDic3).2C4 = Dic3:C8φ: C4/C2C2 ⊆ Out C2xDic396(C2xDic3).2C496,21
(C2xDic3).3C4 = C24:C4φ: C4/C2C2 ⊆ Out C2xDic396(C2xDic3).3C496,22
(C2xDic3).4C4 = D6:C8φ: C4/C2C2 ⊆ Out C2xDic348(C2xDic3).4C496,27
(C2xDic3).5C4 = C2xC8:S3φ: C4/C2C2 ⊆ Out C2xDic348(C2xDic3).5C496,107
(C2xDic3).6C4 = S3xM4(2)φ: C4/C2C2 ⊆ Out C2xDic3244(C2xDic3).6C496,113
(C2xDic3).7C4 = C8xDic3φ: trivial image96(C2xDic3).7C496,20
(C2xDic3).8C4 = S3xC2xC8φ: trivial image48(C2xDic3).8C496,106

׿
x
:
Z
F
o
wr
Q
<