Copied to
clipboard

G = C8×Dic3order 96 = 25·3

Direct product of C8 and Dic3

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C8×Dic3, C244C4, C6.3C42, C3⋊C85C4, C32(C4×C8), C82(C3⋊C8), C2.2(S3×C8), C6.3(C2×C8), C4.20(C4×S3), (C2×C8).10S3, (C2×C4).90D6, C12.40(C2×C4), (C2×C24).14C2, C22.8(C4×S3), C2.2(C4×Dic3), (C2×Dic3).7C4, C4.12(C2×Dic3), (C4×Dic3).10C2, (C2×C12).104C22, C8(C2×C3⋊C8), (C2×C8)(C3⋊C8), (C2×C3⋊C8).12C2, (C2×C6).9(C2×C4), (C2×C8)(C4×Dic3), SmallGroup(96,20)

Series: Derived Chief Lower central Upper central

C1C3 — C8×Dic3
C1C3C6C2×C6C2×C12C4×Dic3 — C8×Dic3
C3 — C8×Dic3
C1C2×C8

Generators and relations for C8×Dic3
 G = < a,b,c | a8=b6=1, c2=b3, ab=ba, ac=ca, cbc-1=b-1 >

3C4
3C4
3C4
3C4
3C8
3C2×C4
3C2×C4
3C8
3C42
3C2×C8
3C4×C8

Smallest permutation representation of C8×Dic3
Regular action on 96 points
Generators in S96
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 30 73 24 86 71)(2 31 74 17 87 72)(3 32 75 18 88 65)(4 25 76 19 81 66)(5 26 77 20 82 67)(6 27 78 21 83 68)(7 28 79 22 84 69)(8 29 80 23 85 70)(9 37 47 58 50 96)(10 38 48 59 51 89)(11 39 41 60 52 90)(12 40 42 61 53 91)(13 33 43 62 54 92)(14 34 44 63 55 93)(15 35 45 64 56 94)(16 36 46 57 49 95)
(1 64 24 15)(2 57 17 16)(3 58 18 9)(4 59 19 10)(5 60 20 11)(6 61 21 12)(7 62 22 13)(8 63 23 14)(25 48 81 89)(26 41 82 90)(27 42 83 91)(28 43 84 92)(29 44 85 93)(30 45 86 94)(31 46 87 95)(32 47 88 96)(33 69 54 79)(34 70 55 80)(35 71 56 73)(36 72 49 74)(37 65 50 75)(38 66 51 76)(39 67 52 77)(40 68 53 78)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,30,73,24,86,71)(2,31,74,17,87,72)(3,32,75,18,88,65)(4,25,76,19,81,66)(5,26,77,20,82,67)(6,27,78,21,83,68)(7,28,79,22,84,69)(8,29,80,23,85,70)(9,37,47,58,50,96)(10,38,48,59,51,89)(11,39,41,60,52,90)(12,40,42,61,53,91)(13,33,43,62,54,92)(14,34,44,63,55,93)(15,35,45,64,56,94)(16,36,46,57,49,95), (1,64,24,15)(2,57,17,16)(3,58,18,9)(4,59,19,10)(5,60,20,11)(6,61,21,12)(7,62,22,13)(8,63,23,14)(25,48,81,89)(26,41,82,90)(27,42,83,91)(28,43,84,92)(29,44,85,93)(30,45,86,94)(31,46,87,95)(32,47,88,96)(33,69,54,79)(34,70,55,80)(35,71,56,73)(36,72,49,74)(37,65,50,75)(38,66,51,76)(39,67,52,77)(40,68,53,78)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,30,73,24,86,71)(2,31,74,17,87,72)(3,32,75,18,88,65)(4,25,76,19,81,66)(5,26,77,20,82,67)(6,27,78,21,83,68)(7,28,79,22,84,69)(8,29,80,23,85,70)(9,37,47,58,50,96)(10,38,48,59,51,89)(11,39,41,60,52,90)(12,40,42,61,53,91)(13,33,43,62,54,92)(14,34,44,63,55,93)(15,35,45,64,56,94)(16,36,46,57,49,95), (1,64,24,15)(2,57,17,16)(3,58,18,9)(4,59,19,10)(5,60,20,11)(6,61,21,12)(7,62,22,13)(8,63,23,14)(25,48,81,89)(26,41,82,90)(27,42,83,91)(28,43,84,92)(29,44,85,93)(30,45,86,94)(31,46,87,95)(32,47,88,96)(33,69,54,79)(34,70,55,80)(35,71,56,73)(36,72,49,74)(37,65,50,75)(38,66,51,76)(39,67,52,77)(40,68,53,78) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,30,73,24,86,71),(2,31,74,17,87,72),(3,32,75,18,88,65),(4,25,76,19,81,66),(5,26,77,20,82,67),(6,27,78,21,83,68),(7,28,79,22,84,69),(8,29,80,23,85,70),(9,37,47,58,50,96),(10,38,48,59,51,89),(11,39,41,60,52,90),(12,40,42,61,53,91),(13,33,43,62,54,92),(14,34,44,63,55,93),(15,35,45,64,56,94),(16,36,46,57,49,95)], [(1,64,24,15),(2,57,17,16),(3,58,18,9),(4,59,19,10),(5,60,20,11),(6,61,21,12),(7,62,22,13),(8,63,23,14),(25,48,81,89),(26,41,82,90),(27,42,83,91),(28,43,84,92),(29,44,85,93),(30,45,86,94),(31,46,87,95),(32,47,88,96),(33,69,54,79),(34,70,55,80),(35,71,56,73),(36,72,49,74),(37,65,50,75),(38,66,51,76),(39,67,52,77),(40,68,53,78)]])

C8×Dic3 is a maximal subgroup of
Dic3⋊C16  C4810C4  C24.97D4  S3×C4×C8  D6.C42  C24⋊Q8  Dic35M4(2)  D6.4C42  Dic3.5M4(2)  C24⋊C4⋊C2  C3⋊D4⋊C8  Dic3⋊M4(2)  Dic34D8  Dic36SD16  Dic3.SD16  (C2×C8).200D6  Dic37SD16  Dic34Q16  Dic3.1Q16  Q8⋊C4⋊S3  C42.27D6  Dic6⋊C8  C42.200D6  C42.31D6  Dic38SD16  C245Q8  C8.8Dic6  Dic35D8  Dic35Q16  C242Q8  C8.6Dic6  D247C4  C12.12C42  C12.7C42  C2421D4  C24.100D4  C245D4  C24.22D4  C24.43D4  C2415D4  C24.26D4  C24.28D4  D85Dic3  C6.(S3×C8)  Dic154C8  C30.C42
C8×Dic3 is a maximal quotient of
C42.279D6  C4810C4  (C2×C24)⋊5C4  C6.(S3×C8)  Dic154C8  C30.C42

48 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E···4L6A6B6C8A···8H8I···8P12A12B12C12D24A···24H
order1222344444···46668···88···81212121224···24
size1111211113···32221···13···322222···2

48 irreducible representations

dim11111111222222
type+++++-+
imageC1C2C2C2C4C4C4C8S3Dic3D6C4×S3C4×S3S3×C8
kernelC8×Dic3C2×C3⋊C8C4×Dic3C2×C24C3⋊C8C24C2×Dic3Dic3C2×C8C8C2×C4C4C22C2
# reps111144416121228

Matrix representation of C8×Dic3 in GL3(𝔽73) generated by

2700
0510
0051
,
7200
0721
0720
,
2700
0260
06271
G:=sub<GL(3,GF(73))| [27,0,0,0,51,0,0,0,51],[72,0,0,0,72,72,0,1,0],[27,0,0,0,2,62,0,60,71] >;

C8×Dic3 in GAP, Magma, Sage, TeX

C_8\times {\rm Dic}_3
% in TeX

G:=Group("C8xDic3");
// GroupNames label

G:=SmallGroup(96,20);
// by ID

G=gap.SmallGroup(96,20);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,24,55,69,2309]);
// Polycyclic

G:=Group<a,b,c|a^8=b^6=1,c^2=b^3,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C8×Dic3 in TeX

׿
×
𝔽