direct product, abelian, monomial, 5-elementary
Aliases: C5×C20, SmallGroup(100,8)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5×C20 |
C1 — C5×C20 |
C1 — C5×C20 |
Generators and relations for C5×C20
G = < a,b | a5=b20=1, ab=ba >
(1 88 23 59 68)(2 89 24 60 69)(3 90 25 41 70)(4 91 26 42 71)(5 92 27 43 72)(6 93 28 44 73)(7 94 29 45 74)(8 95 30 46 75)(9 96 31 47 76)(10 97 32 48 77)(11 98 33 49 78)(12 99 34 50 79)(13 100 35 51 80)(14 81 36 52 61)(15 82 37 53 62)(16 83 38 54 63)(17 84 39 55 64)(18 85 40 56 65)(19 86 21 57 66)(20 87 22 58 67)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
G:=sub<Sym(100)| (1,88,23,59,68)(2,89,24,60,69)(3,90,25,41,70)(4,91,26,42,71)(5,92,27,43,72)(6,93,28,44,73)(7,94,29,45,74)(8,95,30,46,75)(9,96,31,47,76)(10,97,32,48,77)(11,98,33,49,78)(12,99,34,50,79)(13,100,35,51,80)(14,81,36,52,61)(15,82,37,53,62)(16,83,38,54,63)(17,84,39,55,64)(18,85,40,56,65)(19,86,21,57,66)(20,87,22,58,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)>;
G:=Group( (1,88,23,59,68)(2,89,24,60,69)(3,90,25,41,70)(4,91,26,42,71)(5,92,27,43,72)(6,93,28,44,73)(7,94,29,45,74)(8,95,30,46,75)(9,96,31,47,76)(10,97,32,48,77)(11,98,33,49,78)(12,99,34,50,79)(13,100,35,51,80)(14,81,36,52,61)(15,82,37,53,62)(16,83,38,54,63)(17,84,39,55,64)(18,85,40,56,65)(19,86,21,57,66)(20,87,22,58,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100) );
G=PermutationGroup([[(1,88,23,59,68),(2,89,24,60,69),(3,90,25,41,70),(4,91,26,42,71),(5,92,27,43,72),(6,93,28,44,73),(7,94,29,45,74),(8,95,30,46,75),(9,96,31,47,76),(10,97,32,48,77),(11,98,33,49,78),(12,99,34,50,79),(13,100,35,51,80),(14,81,36,52,61),(15,82,37,53,62),(16,83,38,54,63),(17,84,39,55,64),(18,85,40,56,65),(19,86,21,57,66),(20,87,22,58,67)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)]])
C5×C20 is a maximal subgroup of
C52⋊7C8 C52⋊4Q8 C20⋊D5
100 conjugacy classes
class | 1 | 2 | 4A | 4B | 5A | ··· | 5X | 10A | ··· | 10X | 20A | ··· | 20AV |
order | 1 | 2 | 4 | 4 | 5 | ··· | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
100 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||
image | C1 | C2 | C4 | C5 | C10 | C20 |
kernel | C5×C20 | C5×C10 | C52 | C20 | C10 | C5 |
# reps | 1 | 1 | 2 | 24 | 24 | 48 |
Matrix representation of C5×C20 ►in GL2(𝔽41) generated by
16 | 0 |
0 | 10 |
39 | 0 |
0 | 31 |
G:=sub<GL(2,GF(41))| [16,0,0,10],[39,0,0,31] >;
C5×C20 in GAP, Magma, Sage, TeX
C_5\times C_{20}
% in TeX
G:=Group("C5xC20");
// GroupNames label
G:=SmallGroup(100,8);
// by ID
G=gap.SmallGroup(100,8);
# by ID
G:=PCGroup([4,-2,-5,-5,-2,200]);
// Polycyclic
G:=Group<a,b|a^5=b^20=1,a*b=b*a>;
// generators/relations
Export