Copied to
clipboard

G = D62order 124 = 22·31

Dihedral group

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D62, C2×D31, C62⋊C2, C31⋊C22, sometimes denoted D124 or Dih62 or Dih124, SmallGroup(124,3)

Series: Derived Chief Lower central Upper central

C1C31 — D62
C1C31D31 — D62
C31 — D62
C1C2

Generators and relations for D62
 G = < a,b | a62=b2=1, bab=a-1 >

31C2
31C2
31C22

Smallest permutation representation of D62
On 62 points
Generators in S62
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)
(1 62)(2 61)(3 60)(4 59)(5 58)(6 57)(7 56)(8 55)(9 54)(10 53)(11 52)(12 51)(13 50)(14 49)(15 48)(16 47)(17 46)(18 45)(19 44)(20 43)(21 42)(22 41)(23 40)(24 39)(25 38)(26 37)(27 36)(28 35)(29 34)(30 33)(31 32)

G:=sub<Sym(62)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62), (1,62)(2,61)(3,60)(4,59)(5,58)(6,57)(7,56)(8,55)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(31,32)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62), (1,62)(2,61)(3,60)(4,59)(5,58)(6,57)(7,56)(8,55)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(31,32) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)], [(1,62),(2,61),(3,60),(4,59),(5,58),(6,57),(7,56),(8,55),(9,54),(10,53),(11,52),(12,51),(13,50),(14,49),(15,48),(16,47),(17,46),(18,45),(19,44),(20,43),(21,42),(22,41),(23,40),(24,39),(25,38),(26,37),(27,36),(28,35),(29,34),(30,33),(31,32)]])

D62 is a maximal subgroup of   D124  C31⋊D4
D62 is a maximal quotient of   Dic62  D124  C31⋊D4

34 conjugacy classes

class 1 2A2B2C31A···31O62A···62O
order122231···3162···62
size1131312···22···2

34 irreducible representations

dim11122
type+++++
imageC1C2C2D31D62
kernelD62D31C62C2C1
# reps1211515

Matrix representation of D62 in GL3(𝔽311) generated by

31000
0239211
0100100
,
100
0239211
019872
G:=sub<GL(3,GF(311))| [310,0,0,0,239,100,0,211,100],[1,0,0,0,239,198,0,211,72] >;

D62 in GAP, Magma, Sage, TeX

D_{62}
% in TeX

G:=Group("D62");
// GroupNames label

G:=SmallGroup(124,3);
// by ID

G=gap.SmallGroup(124,3);
# by ID

G:=PCGroup([3,-2,-2,-31,1082]);
// Polycyclic

G:=Group<a,b|a^62=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D62 in TeX

׿
×
𝔽