Extensions 1→N→G→Q→1 with N=C3 and Q=S3×C6

Direct product G=N×Q with N=C3 and Q=S3×C6
dρLabelID
S3×C3×C636S3xC3xC6108,42

Semidirect products G=N:Q with N=C3 and Q=S3×C6
extensionφ:Q→Aut NdρLabelID
C31(S3×C6) = C3×S32φ: S3×C6/C3×S3C2 ⊆ Aut C3124C3:1(S3xC6)108,38
C32(S3×C6) = C6×C3⋊S3φ: S3×C6/C3×C6C2 ⊆ Aut C336C3:2(S3xC6)108,43

Non-split extensions G=N.Q with N=C3 and Q=S3×C6
extensionφ:Q→Aut NdρLabelID
C3.1(S3×C6) = C6×D9φ: S3×C6/C3×C6C2 ⊆ Aut C3362C3.1(S3xC6)108,23
C3.2(S3×C6) = C2×C32⋊C6φ: S3×C6/C3×C6C2 ⊆ Aut C3186+C3.2(S3xC6)108,25
C3.3(S3×C6) = C2×C9⋊C6φ: S3×C6/C3×C6C2 ⊆ Aut C3186+C3.3(S3xC6)108,26
C3.4(S3×C6) = S3×C18central extension (φ=1)362C3.4(S3xC6)108,24

׿
×
𝔽