direct product, metabelian, supersoluble, monomial, A-group
Aliases: C6×C3⋊S3, C32⋊7D6, C33⋊5C22, C6⋊(C3×S3), C3⋊2(S3×C6), (C3×C6)⋊4C6, (C3×C6)⋊3S3, (C32×C6)⋊2C2, C32⋊5(C2×C6), SmallGroup(108,43)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C33 — C3×C3⋊S3 — C6×C3⋊S3 |
C32 — C6×C3⋊S3 |
Generators and relations for C6×C3⋊S3
G = < a,b,c,d | a6=b3=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >
Subgroups: 188 in 76 conjugacy classes, 30 normal (10 characteristic)
C1, C2, C2, C3, C3, C3, C22, S3, C6, C6, C6, C32, C32, C32, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C33, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C32×C6, C6×C3⋊S3
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, C3⋊S3, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C6×C3⋊S3
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 25 22)(2 26 23)(3 27 24)(4 28 19)(5 29 20)(6 30 21)(7 17 34)(8 18 35)(9 13 36)(10 14 31)(11 15 32)(12 16 33)
(1 27 20)(2 28 21)(3 29 22)(4 30 23)(5 25 24)(6 26 19)(7 15 36)(8 16 31)(9 17 32)(10 18 33)(11 13 34)(12 14 35)
(1 17)(2 18)(3 13)(4 14)(5 15)(6 16)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)
G:=sub<Sym(36)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,25,22)(2,26,23)(3,27,24)(4,28,19)(5,29,20)(6,30,21)(7,17,34)(8,18,35)(9,13,36)(10,14,31)(11,15,32)(12,16,33), (1,27,20)(2,28,21)(3,29,22)(4,30,23)(5,25,24)(6,26,19)(7,15,36)(8,16,31)(9,17,32)(10,18,33)(11,13,34)(12,14,35), (1,17)(2,18)(3,13)(4,14)(5,15)(6,16)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,25,22)(2,26,23)(3,27,24)(4,28,19)(5,29,20)(6,30,21)(7,17,34)(8,18,35)(9,13,36)(10,14,31)(11,15,32)(12,16,33), (1,27,20)(2,28,21)(3,29,22)(4,30,23)(5,25,24)(6,26,19)(7,15,36)(8,16,31)(9,17,32)(10,18,33)(11,13,34)(12,14,35), (1,17)(2,18)(3,13)(4,14)(5,15)(6,16)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,25,22),(2,26,23),(3,27,24),(4,28,19),(5,29,20),(6,30,21),(7,17,34),(8,18,35),(9,13,36),(10,14,31),(11,15,32),(12,16,33)], [(1,27,20),(2,28,21),(3,29,22),(4,30,23),(5,25,24),(6,26,19),(7,15,36),(8,16,31),(9,17,32),(10,18,33),(11,13,34),(12,14,35)], [(1,17),(2,18),(3,13),(4,14),(5,15),(6,16),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36)]])
C6×C3⋊S3 is a maximal subgroup of
C33⋊6D4 C33⋊8D4 C33⋊9(C2×C4) C33⋊9D4 S32×C6
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | ··· | 3N | 6A | 6B | 6C | ··· | 6N | 6O | 6P | 6Q | 6R |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 |
size | 1 | 1 | 9 | 9 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 2 | ··· | 2 | 9 | 9 | 9 | 9 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D6 | C3×S3 | S3×C6 |
kernel | C6×C3⋊S3 | C3×C3⋊S3 | C32×C6 | C2×C3⋊S3 | C3⋊S3 | C3×C6 | C3×C6 | C32 | C6 | C3 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 4 | 4 | 8 | 8 |
Matrix representation of C6×C3⋊S3 ►in GL4(𝔽7) generated by
6 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 5 | 0 |
0 | 0 | 0 | 5 |
4 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 2 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(7))| [6,0,0,0,0,6,0,0,0,0,5,0,0,0,0,5],[4,0,0,0,0,2,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,2,0,0,0,0,4,0,0,0,0,2],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;
C6×C3⋊S3 in GAP, Magma, Sage, TeX
C_6\times C_3\rtimes S_3
% in TeX
G:=Group("C6xC3:S3");
// GroupNames label
G:=SmallGroup(108,43);
// by ID
G=gap.SmallGroup(108,43);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-3,483,1804]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^3=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations