Extensions 1→N→G→Q→1 with N=C2×C30 and Q=C2

Direct product G=N×Q with N=C2×C30 and Q=C2
dρLabelID
C22×C30120C2^2xC30120,47

Semidirect products G=N:Q with N=C2×C30 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C30)⋊1C2 = D4×C15φ: C2/C1C2 ⊆ Aut C2×C30602(C2xC30):1C2120,32
(C2×C30)⋊2C2 = C157D4φ: C2/C1C2 ⊆ Aut C2×C30602(C2xC30):2C2120,30
(C2×C30)⋊3C2 = C22×D15φ: C2/C1C2 ⊆ Aut C2×C3060(C2xC30):3C2120,46
(C2×C30)⋊4C2 = C3×C5⋊D4φ: C2/C1C2 ⊆ Aut C2×C30602(C2xC30):4C2120,20
(C2×C30)⋊5C2 = D5×C2×C6φ: C2/C1C2 ⊆ Aut C2×C3060(C2xC30):5C2120,44
(C2×C30)⋊6C2 = C5×C3⋊D4φ: C2/C1C2 ⊆ Aut C2×C30602(C2xC30):6C2120,25
(C2×C30)⋊7C2 = S3×C2×C10φ: C2/C1C2 ⊆ Aut C2×C3060(C2xC30):7C2120,45

Non-split extensions G=N.Q with N=C2×C30 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C30).1C2 = C2×Dic15φ: C2/C1C2 ⊆ Aut C2×C30120(C2xC30).1C2120,29
(C2×C30).2C2 = C6×Dic5φ: C2/C1C2 ⊆ Aut C2×C30120(C2xC30).2C2120,19
(C2×C30).3C2 = C10×Dic3φ: C2/C1C2 ⊆ Aut C2×C30120(C2xC30).3C2120,24

׿
×
𝔽